2018-2019学年辽宁省盘锦市双台子区八年级(下)期末数学试卷(含详细解答)
《2018-2019学年辽宁省盘锦市双台子区八年级(下)期末数学试卷(含详细解答)》由会员分享,可在线阅读,更多相关《2018-2019学年辽宁省盘锦市双台子区八年级(下)期末数学试卷(含详细解答)(25页珍藏版)》请在七七文库上搜索。
1、2018-2019学年辽宁省盘锦市双台子区八年级(下)期末数学试卷一选择题(本题共10小题,共30分)1(3分)下列二次根式中,最简二次根式是()ABCD2(3分)下列各组线段中,能够组成直角三角形的一组是()A1,2,3B2,3,4C4,5,6D1,3(3分)下列曲线中不能表示y是x的函数的是()ABCD4(3分)五名同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是()A10B9C8D65(3分)下列运算正确的是()ABCD6(3分)菱形具有而矩形不一定具有的性质是()A对角线互相垂直B对角线相等C对角线互相平分D对角互补7(3分)如图,在平面直角
2、坐标系中,点P坐标为(2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A4和3之间B3和4之间C5和4之间D4和5之间8(3分)如图,在矩形ABCD中,AB2,AOD120,则对角线AC等于()A3B4C5D69(3分)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系则下列说法错误的是()A乙摩托车的速度较快B经过0.3小时甲摩托车行驶到A,B两地的中点C当乙摩托车到达A地时,甲摩托车距离A地kmD经过小时两摩托车相遇10(3分)如图,MN是正方形ABC
3、D的一条对称轴,点P是直线MN上的一个动点当PC+PD最小时,PCD()A60B45C30D15二.填空题(本题共8小题,共24分)11(3分)要使式子有意义,则x的取值范围是 12(3分)如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的边长是 13(3分)一个直角三角形的两条直角边分别为6和8,那么这个直角三角形斜边上的高为 14(3分)有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是 15(3分)在平面直角坐标系中,将直线y2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是 16(3分)如图,在ABCD中,AB10,AD6,
4、ACBC则BD 17(3分)如图,一次函数y1x+b与一次函数y2kx+4的图象交于点P(1,3),则关于x的不等式x+bkx+4的解集是 18(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如图所示的方式放置点A1,A2,A3,和点C1,C2,C3,分别在直线yx+1和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是 三.解答题:(本题共7小题,共66分)19(8分)计算题:(1)(2)(2)(2)20(8分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AECF求证:BEDF21(8分)如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60方
5、向走了50m到达点B,然后再沿北偏西30方向走了50m到达目的地C(1)求A、C两点之间的距离;(2)确定目的地C在营地A的北偏东多少度方向22(10分)某校为了解全校学生下学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x频数频率0x3100.203x6a0.246x9160.329x12mb12x1540.0815x182n根据以上图表信息,解答下列问题:(1)表中a ,b ;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1500名学生,请估计该校在下学期参加社区活动
6、超过6次的学生有多少人?23(10分)如图,一次函数ykx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数yx+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B(1)求k、b的值;(2)求点B的坐标;(3)求ABC的面积24(10分)某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润总售价总进价)(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;(2)求总利润w关于x的函数解析式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场
7、如何进货才能获利最多?并求出最大利润饮料果汁饮料碳酸饮料进价(元/箱)4025售价(元/箱)523225(12分)已知:矩形ABCD中,AB10,AD8,点E是BC边上一个动点,将ABE沿AE折叠得到ABE(1)如图1,点G和点H分别是AD和AB的中点,若点B在边DC上求GH的长;求证:AGHBCE;(2)如图2,若点F是AE的中点,连接BF,BFAD,交DC于I求证:四边形BEBF是菱形;求BF的长2018-2019学年辽宁省盘锦市双台子区八年级(下)期末数学试卷参考答案与试题解析一选择题(本题共10小题,共30分)1(3分)下列二次根式中,最简二次根式是()ABCD【分析】判定一个二次根式
8、是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【解答】解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C、,是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式;故选:C【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式2(3分)下列各组线段中,能够组成直角三角形的一组是()A1,2,3B2,3,4C4,5,6D1,【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形
9、是直角三角形判定则可【解答】解:A、12+2232,不能组成直角三角形,故错误;B、22+3242,不能组成直角三角形,故错误;C、42+5262,不能组成直角三角形,故错误;D、12+()2()2,能够组成直角三角形,故正确故选:D【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断3(3分)下列曲线中不能表示y是x的函数的是()ABCD【分析】函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量由此即
10、可判断【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应故C中曲线不能表示y是x的函数,故选:C【点评】考查了函数的概念,理解函数的定义,是解决本题的关键4(3分)五名同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是()A10B9C8D6【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数【解答】解:题目中数据共有5个,故中位数是按从小到大排列后第三数作为中位数,故这组数据的中位数是8故选:C【点评】
11、本题属于基础题,考查了确定一组数据的中位数的能力要明确定义一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数5(3分)下列运算正确的是()ABCD【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断【解答】解:A、与不能合并,所以A选项错误;B、原式6212,所以B选项错误;C、原式2,所以C选项准确;D、原式2,所以D选项错误故选:C【点评】本题考查了二次根式的混合运算:
12、先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍6(3分)菱形具有而矩形不一定具有的性质是()A对角线互相垂直B对角线相等C对角线互相平分D对角互补【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角
13、互补,故本选项不符合要求;故选:A【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等7(3分)如图,在平面直角坐标系中,点P坐标为(2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A4和3之间B3和4之间C5和4之间D4和5之间【分析】先根据勾股定理求出OP的长,由于OPOA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论【解答】解:点P坐标为(2,3),OP,点A、P均在以点O为圆心,以OP为半径的圆上,OAOP,91316,34点A在x轴的负半轴上
14、,点A的横坐标介于4和3之间故选:A【点评】本题考查的是勾股定理及估算无理数的大小,根据题意利用勾股定理求出OP的长是解答此题的关键8(3分)如图,在矩形ABCD中,AB2,AOD120,则对角线AC等于()A3B4C5D6【分析】计算出ACB30,在RtACB中,则AC2AB4【解答】解:四边形ABCD是矩形,BOCO,ABC90又BOCAOD120,ACB30在RtACB中,AC2AB224故选:B【点评】本题主要考查了矩形的性质,30直角三角形的性质,解决矩形的问题一般会运用矩形的对角线相等且互相平分的性质9(3分)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行图中l1,l
15、2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系则下列说法错误的是()A乙摩托车的速度较快B经过0.3小时甲摩托车行驶到A,B两地的中点C当乙摩托车到达A地时,甲摩托车距离A地kmD经过小时两摩托车相遇【分析】根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题【解答】解:由图可得,甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;甲的速度为:200.6(km/h),则甲行驶0.3h时的路程为:0.310(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;当乙摩托车到达A地时,甲摩托车距离A地:0.5(km)
16、,故选项C错误;乙的速度为:200.540(km/h),则甲、乙相遇时所用的时间是(小时),故选项D正确;故选:C【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答10(3分)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点当PC+PD最小时,PCD()A60B45C30D15【分析】连接BD交MN于P,如图,利用两点之间线段最短可得到此时PC+PD最短,即点P运动到P位置时,PC+PD最小,然后根据正方形的性质求出PCD的度数即可【解答】解:连接BD交MN于P,如图,MN是正方形ABCD的一条对称轴,PBPC,PC+PDPB+PDBD,此时PC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 辽宁省 盘锦市 子区 年级 期末 数学试卷 详细 解答
链接地址:https://www.77wenku.com/p-125762.html