上海1对3秋季课程讲义-数学-九年级-第16讲-二次函数与三角形(角度、锐角三角比、面积)-学案
《上海1对3秋季课程讲义-数学-九年级-第16讲-二次函数与三角形(角度、锐角三角比、面积)-学案》由会员分享,可在线阅读,更多相关《上海1对3秋季课程讲义-数学-九年级-第16讲-二次函数与三角形(角度、锐角三角比、面积)-学案(11页珍藏版)》请在七七文库上搜索。
1、精锐教育1对3辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题第15讲-二次函数与三角形(角度、锐角三角比、面积)学习目标1运用二次函数图像的性质结合面积三角形的性质,求解;2结合二次函数图像的性质以及锐角三角比(包括特殊角)的值求线段,角度等:教学内容面积的存在性问题常见的题型和解题策略有两类:第一类,先根据几何法确定存在性,再列方程求解,后检验方程的根第二类,先假设关系存在,再列方程,后根据方程的解验证假设是否正确锐角三角比的主要学找一些特殊的角,找到已知两角的与横轴和纵轴或过两点作横轴和纵轴的垂线的交点的坐标围成的特殊三角形三边比为或或等【知识梳理1】一、二次函数的
2、图象及性质1.和共同决定抛物线对称轴的位置(抛物线的对称轴:)当时,抛物线的对称轴为轴;当、同号时,对称轴在轴的左侧;当、异号时,对称轴在轴的右侧的大小决定抛物线与轴交点的位置(抛物线与轴的交点坐标为)当时,抛物线与轴的交点为原点;当时,交点在轴的正半轴;当时,交点在轴的负半轴2.二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴
3、的交点3.点的坐标设法.(1)二次函数()图像上的任意一点可设为.时,该点为抛物线与轴交点,当时,该点为抛物线顶点(2)点关于的对称点为4 二次函数的性质:抛物线的顶点是坐标原点(0,0),对称轴是( 轴)函数的图像与的符号关系当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点;5 二次函数或()的性质开口方向: 对称轴:(或)顶点坐标:(或)【知识梳理2】对边邻边斜边ACB2、 如下图,在RtABC中,C为直角,则A的锐角三角函数为:定 义表达式取值范围关 系正弦(A为锐角)余弦(A为锐角)正切(A为锐角) (倒数)余切(A为锐角) 3、任意锐角的正弦值等于它的余角的余弦值;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 秋季 课程 讲义 数学 九年级 16 二次 函数 三角形 角度 锐角三角 面积
链接地址:https://www.77wenku.com/p-126273.html