七年级下册数学提高讲义第12讲-生活中的轴对称-教案
《七年级下册数学提高讲义第12讲-生活中的轴对称-教案》由会员分享,可在线阅读,更多相关《七年级下册数学提高讲义第12讲-生活中的轴对称-教案(18页珍藏版)》请在七七文库上搜索。
1、第12讲 生活中的轴对称 温故知新三角形全等的条件(二)(1)三角形全等条件3: 两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“边边角”或“AAS”。 符号语言:如图:D在AB上,E在AC上,DC=EB,C=B求证:ACDABE证明:在ACD和ABE中 ACDABE(AAS)(2)三角形全等条件4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”。符号语言:在ABC与DEF中,ABCDEF(SAS)(3)直角三角形全等条件:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。符号语言:在RtABC与RtDEF中,ABC=DEF=90
2、, RtABCRtDEF(HL) 智慧乐园中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术。观察下列剪纸,你觉得它们有什么特征?与同伴进行交流知识要点一。轴对称(一)轴对称的定义(1)轴对称:如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。(2)轴对称图形:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。(3)轴对称与轴对称图形的区别:成轴对称是对于两个图形而言的,指的是两个图形形状和位置关系,而轴对称图形是指一个具有特殊形状的图形。(二)轴对
3、称的性质(1)对应点、线段、角的概念:我们把对称轴折叠后能够重合的点叫做对应点,重合的线段叫做对应线段,重合的角叫做对应角。(2)轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。(3)画已知图形的轴对称图形:画轴对称图形,首先应该确定对称轴,然后找出对称点。连接这些对称点就可以得到原图形的轴对称图形。(4)轴对称-最短路线问题:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点 典例分析例1、下列图形中不
4、是轴对称图形的是()A B C D【解析】C例2、如图,是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()A B C D 【解析】C 例3、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多反射),那么该球最后将落入的球袋是() A1号袋B2号袋 C3号袋 D4号袋【解析】B例4、把矩形纸片ABCD沿对角线BD折叠,重叠部分为EBD,下列说法错误的是()AAB=CD BBAE=DCE CEB=ED DABE一定等
5、于30【解析】D例5、如图,在ABC中,点D、E分别是边AB、AC的中点,B=50,A=26,将ABC沿DE折叠,点A的对应点是点A,则AEA的度数是()A145 B152 C158 D160【解析】B例6、已知直线l的同侧有A,B两点(图1),要在直线l上确定一点P,使PA+PB的值最小小明同学的做法如图2:作点A关于直线l的对称点A,连接AB交l于点P,则PA+PB=AP+PB=AB,由“两点之间,线段最短”可知,点P即为所求的点请问小明同学的做法是否正确?说明理由【解析】小明的做法正确,根据两点之间线段最短分析即可答:小明的做法正确,理由如下:点A和点A关于直线l对称,且点P在l上,PA
6、=PA,又AB交l与P,且两条直线相交只有一个交点,PA+PB最短,即PA+PB的值最小学霸说:(1)对称轴是一条直线,不是线段,也不是射线;(2)轴对称图形的对称轴可以有一条,也可以有多条。 举一反三1、下列各图中,为轴对称图形的是()A B C D【解析】C2、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则CDM周长的最小值为()A6 B8 C10 D12【解析】连接AD,ABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=4AD=16,解得AD=8,EF是线段AC的垂
7、直平分线,点C关于直线EF的对称点为点A,AD的长为CM+MD的最小值,CDM的周长最短=(CM+MD)+CD=AD+BC=8+4=8+2=10故选C3、如图,MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点若GH的长为10cm,求PAB的周长为()A5cm B10cm C20cm D15cm【解析】B4、如图,ABC中,A=60,将ABC沿DE翻折后,点A落在BC边上的点A处如果AEC=70,那么ADE的度数为【解析】655、如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,求证:BF=DF;【解析】由折叠的性
8、质知,CD=ED,BE=BC四边形ABCD是矩形,AD=BC,AB=CD,BAD=90,AB=DE,BE=AD,在ABD与EDB中,ABDEDB(SSS),EBD=ADB,BF=DF6、如图,直线l同侧有A、B两点,请利用直尺和圆规在直线l上求作一点P,使AP+BP值最小(不写作法,保留作图痕迹)【解析】作A点关于直线l的对称点A,连接AB交l于点P,则P点为所求知识要点二简单的轴对称图形(一)等腰三角形定义:三角形中有两边相等的三角形叫做等腰三角形。特征:(1)等腰三角形是轴对称图形。(2)等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(也称“等腰三角形的三线合一”),“三线”所
9、在的直线就是等腰三角形的对称轴。(3)等腰三角形的两腰相等、两底角相等。判定方法:(1)有两条边相等的三角形是等腰三角形。(2)有两个角相等的三角形是等腰三角形,这两个角所对的边也相等,简称“等角对等边”(二)等边三角形定义:三边都相等的三角形叫做等边三角形,也叫正三角形。特征:(1)等边三角形是轴对称图形。(2)等边三角形的三条边相等,三个内角都相等且都为60判别方法:(1)三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形。(3)有一个角是60的等腰三角形是等边三角形。(三)线段的轴对称性(1)线段是轴对称图形,垂直且平分线段的直线就是它的对称轴。(2)线段的垂直平分线
10、定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线,也称中垂线。如上图,直线AB,且AC=BC,则直线叫做线段AB的垂直平分线。(3)线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。如上图,则AP=BP.(4)尺规作线段的垂直平分线:(四)角的轴对称性(1)角是轴对称图形,角平分线所在的直线就是角的对称轴。(2)角平分线的性质:角平分线上的点到这个角的两边的距离相等。如图,OP是AOB的角平分线,PDOA、PEOB,则DP=EP.(3)尺规作已知角的角平分线:如右上图 典例分析例1、如图,在ABC中,AB=AC,A=30,E为BC延长线上一点,ABC
11、与ACE的平分线相交于点D,则D的度数为()A15 B17.5 C20 D22.5【解析】A例2、如图,ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,A=50,则CDE的度数为()A50 B51 C51.5 D52.5【解析】D例3、等边三角形ABC中,BD=CE,AD与BE相交于点P,则APE的度数是()A45 B55 C60 D75【解析】C例4、如图,在ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则BAD的度数为()A65 B60 C55 D45【解析】A例5、如图,在RtAB
12、C中,C=90,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则ABD的面积是()A15 B30 C45 D60【解析】B例6、在RtABC中,ACB=90,A=22.5,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE线段DE和BF在数量和位置上有什么关系?说明理由DE=BF,DEBF理由如下:【解析】连接BD,延长BF交DE于点G点D在线段AB的垂直平分线上,AD=BD,ABD=A=22.5在RtABC中,ACB=9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 提高 讲义 12 生活 中的 轴对称 教案
链接地址:https://www.77wenku.com/p-126361.html