七年级下册数学讲义第03讲-整式的乘法与平方差公式(培优)-学案
《七年级下册数学讲义第03讲-整式的乘法与平方差公式(培优)-学案》由会员分享,可在线阅读,更多相关《七年级下册数学讲义第03讲-整式的乘法与平方差公式(培优)-学案(14页珍藏版)》请在七七文库上搜索。
1、 学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题 第03讲-整式的乘法与平方差公式授课类型T同步课堂P实战演练S归纳总结教学目标 掌握整式的乘法法则,能够准确计算整式乘法的计算题; 理解平方差公式,了解平方差公式的几何背景,会灵活运用平方差公式进行计算。授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架二、知识概念 (一)整式的乘法 1、单项式与单项式相乘法则:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数保持不变,作为积的因式。 2、单项式与多项式相乘法则:根据分配律用单项式乘以多项式的每一项,再把所
2、得的积相加。公式如下: 都是单项式)3、多项式与多项式相乘法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。公式如下:都是单项式)(二)平方差公式1、平方差公式:,即两个数的和与这两个数的差的积,等于这两个数的平方差。公式的推导:。平方差公式的逆用即平方差公式的特点:(1)左边是两个二项式的积,在这两个二项式中,有一项(a)完全相同,另一项(b和-b)互为相反数。(2)右边是乘式中两项的平方差(相同项的平方减去符号相反项的平方)(3)公式中的a和b可以是具体数,也可以是单项式和多项式。 2、平方差公式的几何意义如图两幅图中,阴影部分的面积相等,第一个图的阴影部分的 面积是
3、:a2b2,第二个图形阴影部分的面积是:(a+b)(ab),则a2b2=(a+b)(ab) 平方差公式的几何意义还有很多,有兴趣的同学可以钻研一下。3、平方差公式的应用。平方差公式一般运用在化简求值,找规律简便计算中等。会涉及到平方差公式的逆用。典例分析 考点一:整式的乘法 例1、下列计算正确的是()A(2a)(3ab2a2b)=6a2b4a3b B(2ab2)(a2+2b21)=4a3b4C(abc)(3a2b2ab2)=3a3b22a2b3 D(ab)2(3ab2c)=3a3b4a2b2c例2、若(am+1bn)(a2m1b2n)=a5b6(a、b均不等于1和0)则求m+n的值例3、阅读下
4、列文字,并解决问题已知x2y=3,求2xy(x5y23x3y4x)的值分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,考虑整体思想,将x2y=3整体代入解:2xy(x5y23x3y4x)=2x6y36x4y28x2y=2(x2y)36(x2y)28x2y=23363283=24请你用上述方法解决问题:已知ab=3,求(2a3b23a2b+4a)(2b)的值例4、计算:(1)(4ab3)(ab)(ab2)2 (2)(1.25108)(8105)(3103)(3)(x2yxy2y3)(4xy2) (4)anb23bn12abn+1+(1)2003 例5、观察下列各式(x1)(x
5、+1)=x21(x1)(x2+x+1)=x31(x1)(x3+x2+x+1)=x41 根据以上规律,则(x1)(x6+x5+x4+x3+x2+x+1)= 你能否由此归纳出一般性规律:(x1)(xn+xn1+x+1)= 根据求出:1+2+22+234+235的结果例6、先阅读后作答:根据几何图形的面积关系可以说明整式的乘法例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图1的面积关系来说明 (1)根据图2写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明考点二: 平方差公式例1、已知a=20162,b=20152017,则()Aa=
6、b Bab Cab Dab例2、下列各式中不能用平方差公式计算的是()A(2a+b)(2ab) B(2a+b)(b2a)C(2a+b)(2ab)D(2ab) (2ab)例3、小明在计算时,找不到计算器,去向小华借,小华看了看题说根本不用计算器,而且很快说出了答案你知道答案是多少吗,请将答案填在横线上 有例4、计算:(1)(x+2)(x2)(x2+4) (2)(2a+b)(2ab)4a(ab) (3) (4)4002399401 (5)(2x3y)(3y+2x)(4y3x)(3x+4y) (6)(x+y)(x-y)+(2x+y)(2x-y)例5、若(N+2005)2=123456789,求(N+
7、2015)(N+1995)的值例6、两个两位数的十位数字相同,一个数的个位数字是6,另一个数的个位数字是4,它们的平方差是220,求这两个两位数例7、阅读下列材料:某同学在计算3(4+1)(42+1)时,把3写成41后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(41)(4+1)(42+1)=(421)(42+1)=1621很受启发,后来在求(2+1)(22+1)(24+1)(28+1)(22048+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为21得(2+1)(22+1)(24+1)(28+1)(22048+1)=(21)(2+1)(22+1)(24+1)(28+1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 讲义 03 整式 乘法 平方 公式 培优
文档标签
- 七年级下册数学讲义第08讲-变量之间的关系培优-学案
- 七年级上册数学同步讲义第8讲乘法公式一
- 七年级下册数学讲义第01讲-整式的乘除培优-学案
- 七年级上册数学同步讲义第6讲整式的乘法一
- 七年级下册数学讲义第01讲-整式的乘除培优-教案
- 七年级下册数学讲义第01讲-整式的乘除提高-学案
- 七年级下册数学讲义第03讲-整式的乘法与平方差公式培优-学案
- 七年级下册数学讲义第03讲-变量之间的关系提高-学案
- 七年级下册数学讲义第03讲-变量之间的关系培优-教案
- 七年级下册数学讲义第02讲-幂的乘方与积的乘方培优-学案
- 七年级上册数学同步讲义第9讲 乘法公式二
- 七年级上册数学同步讲义第7讲 整式的乘法二
- 七年级下册数学讲义第03讲-整式的乘法与平方差公式培优-教案
- 平方和平方差
- 完全平方差
链接地址:https://www.77wenku.com/p-126363.html