2020高考数学(理)模拟卷含答案解析(6)
《2020高考数学(理)模拟卷含答案解析(6)》由会员分享,可在线阅读,更多相关《2020高考数学(理)模拟卷含答案解析(6)(26页珍藏版)》请在七七文库上搜索。
1、2020高考数学(理)模拟卷(6)(本试卷满分150分,考试用时120分钟)第I卷(选择题)一、 单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数满足(为虚数单位),则复数( )ABCD【答案】B【解析】【分析】运用复数的除法运算法则求出复数,在根据共轭复数的定义求出复数.【详解】由题意,可变形为.则复数.故选:B.【点睛】本题考查了复数的除法运算法则和共轭复数的定义,属于基础题.2已知:,则是成立的( )A充分但不必要条件B必要但不充分条件C充分必要条件D既不是充分条件也不是必要条件【答案】A【解析】【分析
2、】构造函数,先解出命题中的取值范围,由不等式对恒成立,得出,解出实数的取值范围,再由两取值范围的包含关系得出命题和的充分必要性关系。【详解】构造函数,对,恒成立,则,解得,因此,是的充分但不必要条件,故选:A.【点睛】本题考查充分必要条件的判断,一般利用集合的包含关系来判断两条件的充分必要性:(1),则“”是“”的充分不必要条件;(2),则“”是“”的必要不充分条件;(3),则“”是“”的充要条件;(4),则“”是“”的既不充分也不必要条件。3已知,则()ABCD【答案】A【解析】由题意可得:本题选择A选项.4元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元,而购买
3、4只玫瑰与5只康乃馨所需费用额小于22元;设购买2只玫瑰花所需费用为元,购买3只康乃馨所需费用为元,则的大小关系是( )ABCD的大小关系不确定【答案】A【解析】【分析】设出玫瑰与康乃馨的单价,根据题意列出不等式,求出的表达式,利用不等式的性质求解即可.【详解】设玫瑰与康乃馨的单价分别为(单位为:元),则有.所以有,因此.可得:;可得:,因此.故选:A【点睛】本题考查了数学阅读能力,考查了不等式性质的应用,考查了数学建模思想,考查数学运算能力.5已知函数,,若,则a,b,c的大小关系为( )Aa<b<cBc<b<aCb
4、<a<cDb<c<a【答案】C【解析】解:依题意,有,则为奇函数,且在上单调递增,所以为偶函数当时,有,任取,则,由不等式的性质可得,即,所以,函数在上递增,因此,故选:C【点睛】本题考查函数值大小的比较,考查函数的单调性与奇偶性的应用,考查推理与转化能力,属于中档题.6鸡兔同笼,是中国古代著名的趣味题之一.孙子算经中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )ABCD【答案】B【解析】【分析】由题意知为鸡的数量,为兔的数量,为足的数量,根据题意可得出判断条件.【详解】由
5、题意可知为鸡的数量,为兔的数量,为足的数量,根据题意知,在程序框图中,当计算足的数量为时,算法结束,因此,判断条件应填入“”.故选B.【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题.7已知抛物线的焦点为,为抛物线上一点,当周长最小时,所在直线的斜率为( )ABCD【答案】A【解析】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A。【点睛】本道题考查了抛物线的基本性质,难度中等。8函数在上的图象大致是( &n
6、bsp; )ABCD【答案】A【解析】【分析】先判断出是偶函数,排除C、D,再由的正负排除B,从而得到答案.【详解】因为,所以函数是偶函数,排除C、D,又当时,排除B,故选:A.【点睛】本题考查函数图像的识别,属于简单题.9抛物线上的一点到焦点的距离为1,则点的纵坐标是( )AB1CD【答案】D【解析】【分析】由抛物线方程先计算出的值,然后再根据焦半径公式计算出的纵坐标.【详解】因为是抛物线的方程,所以;因为,所以,所以,故选:D.【点睛】本题考查抛物线的焦半径公式的应用,难度较易.对于形如的抛物线,抛物线上任意一点到其焦点的距离为;对于形如的抛物线,抛物线上任意一点到
7、其焦点的距离为.10由曲线 ,围成的封闭图形的面积为( )ABCD【答案】C【解析】围成的封闭图形的面积为,选C.11已知函数为定义在上的奇函数,当时,.若函数存在四个不同的零点,则的取值范围为( )ABCD【答案】A【解析】【分析】当时,对函数进行求导,判断出函数的单调性,再根据奇函数的性质画出函数的一致图象,最后利用数形结合思想示出的取值范围.【详解】当时, ,故在上单调递增,因为.故f在上单调递战,在上单调递增.如图为大致图象.由存在四个不同的零点知与的图象有四个不同交点,故.故选:A【点睛】本题考查了已知函数的零点个数求参数取值问题,利用数形结合是
8、解题的关键.12已知函数.若不等式的解集中整数的个数为,则的取值范围是( )ABCD【答案】D【解析】【分析】对进行变形,得到,令,即的整数个数为3,再由的函数图像和的函数图像,写出限制条件,得到答案【详解】,即设,其中时,时,即符合要求,所以时,单调递减,单调递增,为极小值.有三个整数解,则还有一个整数解为或者是当解集包含时,时,所以需要满足即,解得当解集包含时,需要满足即整理得,而,所以无解集,即该情况不成立.综上所述,由得,的范围为故选D项.【点睛】利用导数研究函数图像,两个函数图像的位置关系与解析式大小之间的关系,数形结合的数学思想,题目较综合,考查内容比较多,属于难题.第
9、II卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13曲线在点处的切线与坐标轴所围三角形的面积为 .【答案】【解析】解析:依题意得y=ex,因此曲线y=ex在点A(2,e2)处的切线的斜率等于e2,相应的切线方程是y-e2=e2(x-2),当x=0时,y=-e2即y=0时,x=1,切线与坐标轴所围成的三角形的面积为:14展开式中的系数为_(用数值作答)【答案】6【解析】【分析】分别计算中的常数项,含的项,含的项和含的项再分析即可.【详解】由题
10、, ,故展开式中含的项为.展开式中的系数为6.故答案为:6【点睛】本题主要考查了二项式定理的运用,属于基础题型.15已知当时,均有不等式成立,则实数a的取值范围为_【答案】【解析】【分析】可分类讨论,时,恒成立,只要研究即可,这可用导数研究;时,可得与都是增函数,且都有唯一零点,因此只要使它们的零点相同即可满足题意;直接验证【详解】时,不等式为,不恒成立;时,令,由得,当时,递增,时,递减,时,要使命题成立,则,;时,函数是增函数,在唯一零点,即增函数,但当时,所以有唯一零点,要使不等式恒成立,只有,综上的取值范围是故答案为:【点睛】本题考查用导数研究不等式恒成立问题解题关键是把不等式中两个式
11、子和分别研究,减少了难度否则把不等式左边作为一个函数研究将会非常难,甚至不可进行16如图,在四棱锥中,平面,分别为棱上一点,若与平面所成角的正切值为2,则的最小值为_.【答案】【解析】【分析】先找出与平面所成角,再利用正切值为2,证得E为PC的中点.根据所给各边的长度,求出的斜弦值,再将翻折至与平面PAB共面,利用余弦定理求出,即为的最小值.【详解】取CD的中点H,连接BH,EH.依题意可得,.因为平面ABCD,所以,从而平面ABCD,所以BE与平面PCD所成角为,且,则,则E为PC的中点. 在中,.因为,所以,所以.将翻折至与平面PAB共面,如图所示,则图中,当F为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国
文档标签
- 2020地理高考模拟卷含答案解析
- 2020高考数学理模拟卷含答案解析13
- 2020高考数学理模拟卷含答案解析10
- 2020高考数学理模拟卷含答案解析12
- 2020数学文高考模拟卷含答案解析
- 2020高考物理模拟卷含答案解析6
- 2020高考数学理模拟卷含答案解析14
- 2020高考数学理模拟卷含答案解析1
- 2020高考数学理模拟卷含答案解析6
- 2020高考数学理模拟卷含答案解析7
- 2020高考数学理模拟卷含答案解析3
- 2020数学理高考模拟卷含答案
- 2020数学高考模拟自测卷含答案解析
- 2020高考数学理模拟卷含答案解析8
- 2020高考数学理模拟卷含答案解析5
- 2020年数学理高考模拟卷新课标卷6含答案
- 2020高考数学理模拟卷含答案解析9
- 2020高考数学理模拟卷含答案解析2
- 2020高考数学理模拟卷含答案解析15
- 2020高考数学理模拟卷含答案解析16
链接地址:https://www.77wenku.com/p-126382.html