《八年级下册数学升学课程第02讲-一元一次不等式与一元一次不等式组(培优)-学案》由会员分享,可在线阅读,更多相关《八年级下册数学升学课程第02讲-一元一次不等式与一元一次不等式组(培优)-学案(12页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第02讲-一元一次不等式与一元一次不等式组授课类型T同步课堂P实战演练S归纳总结教学目标 了解不等式的概念; 掌握一元一次不等式的概念、解法及应用; 掌握一元一次不等式组的解法及应用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、不等式的定义:一般的,用符号“ ”(或“ ”)“”(或“ ”)连接的式子叫做不等式。2、不等式的基本性质:不等式的基本性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变。不等式的基本性质2:不等式的两边都乘(或除以)同
2、一个正数,不等号的方向不变。不等式的基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变。3、不等式的其他性质(1)对称性,也叫互逆性:若 ,则 。(2)传递性:若, ,则 。(3)若 ,则 同号,反之,若 同号,则 ; 若 ,则 异号,反之,若 异号,则。(4)若 ,则,反之,若,则; 若 ,则 ,反之,若,则。4、不等式的解集(1)能使不等式成立的未知数的值,叫做不等式的解。(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。(3)不等式的解与不等式的解集的区别:不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集是指满足这个不等式的未知数的所有值。5、不等式
3、解集的两种表示方法:(1)用不等式表示;(2)用数轴表示。6、一元一次不等式的概念:左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。7、一元一次不等式的解法:(1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)系数化1。8、一元一次不等式与一次函数:(1)利用一次函数的图象解一元一次不等式 (或 )。(2)利用一次函数的图象解一元一次不等式 (或)9、一元一次不等式组的概念:一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。10、一元一次不等式组的解集的概念:一元一次不等式组中各个不等式的解集的公共部
4、分,叫做这个一元一次不等式组的解集。11、一元一次不等式组的解法步骤一:根据不等式的性质求出每一个不等式的解集步骤二:将每一个不等式的解集利用数轴进行合并得到不等式组的解由两个一元一次不等式组成的不等式组,可以归结为下述四种基本类型:(表中)不等式图示解集(大大取大)(小小取小)(大小小大中间找)无解(大大小小解不了)12、一元一次不等式组的应用列不等式组解决实际问题的一般步骤(1)找:找出问题中的不等关系;(2)设:设出未知数;(3)列:根据前面的不等关系列出不等式组;(4)解:解不等式组;(5)答:检验后答出结果。考点一:不等式的基本性质例1、下列判断中,正确的序号为 若ab0,则ab0;
5、若ab0,则a0,b0;若ab,c0,则acbc;若ab,c0,则ac2bc2;若ab,c0,则acbc例2、已知x为任意实数,给出下列关于x的不等式:x2+12x; x2+13x; ; 其中一定成立的是 (选出所有成立的不等式的序号)考点二:一元一次不等式(组)例1、不等式组的解集是x1,则m的取值范围是()Am1 Bm1 Cm0 Dm0例2、已知不等式4xa0的正整数解是1,2,则a的取值范围是()A8a12 B8a12C8a12 D8a12例3、若不等式组无解,则a的取值范围是()Aa Ba12 Ca Da12例4、如果关于x的不等(2mn)x+m5n0的解集为x,试求关于x的不等式mx
6、n的解集例5、解不等式(组),并将解集在数轴上表示出来:(1)+1x3; (2)考点三:一元一次不等式(组)与一次函数例1、如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mxkx+bmx2的解集是()A1x2 B0x2 C0x1 D1x例2、已知一次函数y=ax+b(a、b是常数,a0)函数图象经过(1,4),(2,2)两点,下面说法中:(1)a=2,b=2;(2)函数图象经过(1,0);(3)不等式ax+b0的解集是x1;(4)不等式ax+b0的解集是x1;正确的说法有 (请写出所有正确说法的序号)例3、如图,直线y=x+b与直线y=kx+6交于点
7、P(3,5),则关于x的不等式x+bkx+6的解集是 例4、如图,函数y=2x+3与y=x+m的图象交于P(n,2)(1)求出m、n的值;(2)直接写出不等式x+m2x+3的解集;(3)求出ABP的面积考点四:不等式的综合应用例1、为了更好地治理木兰溪水质,保护环境,市治污公司决定购买10台污水处理设备,现有A B两种设备,A B单价分别为a万元/台 b万元/台 月处理污水分别为240吨/月 200吨/月,经调查 买一台A型设备比买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元(1)求a、b的值(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种
8、购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案例2、某蔬菜培育中心决定向某灾区配送无辐射蔬菜和水果共3200箱,其中水果比蔬菜多800箱(1)求水果和蔬菜各有多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批水果和蔬菜全部运往该乡中小学已知每辆甲种货车最多可装水果400箱和蔬菜100箱,每辆乙种货车最多可装水果和蔬菜各200箱,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元运输部门应选择哪种方案可使运费最少?最少运
9、费是多少元?P(Practice-Oriented)实战演练实战演练 课堂狙击1、不等式无解,则a的取值范围是()Aa2 Ba2 Ca2 Da22、若关于x的不等式2xm0的正整数解只有4个,则m的取值范围是()A8m10 B8m10 C8m10 D4m53、若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5的图象不经过第三象限,则符合题意的整数k有()个A4 B3 C2 D14、若关于x的一元一次不等式组有解,则m的取值范围是()Am2 Bm2 Cm2 Dm25、若关于x的不等式组无解,则a的取值范围是()Aa2 Ba2 C1a2 D1a26、如图,已知函数y=ax+2与
10、y=bx3的图象交于点A(2,1),则根据图象可得不等式axbx5的解集是 7、解下列不等式及不等式组,并把解在数轴上表示上出来:(1) (2)8、已知方程组的解满足x为非正数,y为负数(1)求m的取值范围;(2)化简:|m3|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x2m+1的解为x19、如图,请根据图象所提供的信息解答下列问题:(1)当x 时,kx+bmxn;(2)不等式kx+b0的解集是 ;(3)交点P的坐标(1,1)是二元一次方程组: 的解;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、 y轴于点B、N,求点M的坐标和四边形OMPN的面积 课后
11、反击1、若关于x的不等式组无解,则a的取值范围是()Aa3 Ba3 Ca3 Da32、已知不等式2xa0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()Aa10 B10a12 C10a12 D10a123、若不等式组有解,则实数a的取值范围是()Aa2 Ba2 Ca2 Da24、直线l的解析式是y=kx+2,其中k是不等式组的解,则直线l的图象不经过()A第一象限 B第二象限 C第三象限 D第四象限5、己知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:k0;a0;关于x的方程kx+b=x+a的解为x=3;x3时,y1y2正确的个数是()A1 B2 C3 D46、我们
12、定义=adbc,例如=2534=1012=2,若x,y均为整数,且满足13,则x+y的值是 7、如图,直线y=x+m与y=nx+4n(n0)的交点的横坐标为2,则关于x的不等式x+mnx+4n0的整数解是 8、已知x=1满足不等式组,求a的取值范围9、某电脑经销商计划购进一批电脑机箱和液晶显示器,已知:购进电脑机箱2台和液晶显示器5台,共需要资金4120元;购进电脑机箱10台和液晶显示器8台,共需要资金7000元(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品50台,其中电脑机箱不少于24台根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元该经销商
13、希望销售完这两种商品,所获利润不少于4100元试问:该经销商有几种进货方案?直击中考1、【2016丰台】下列不等式变形正确的是()A由ab,得a2b2 B由ab,得abC由ab,得 D由ab,得acbc2、【2016泉港】如图,经过点B(2,0)的直线y=kx+b与直线y=4x+2相交于点A(1,2),4x+2kx+b0的解集为()Ax2 B2x1Cx1 Dx1S(Summary-Embedded)归纳总结重点回顾不等式的性质是对不等式进行变形的重要依据,是学好不等式的基础和关键。(1)不等式两边加上(或减去)同一个数(或式),不等号方向不变。如果ab,那么 。(2)不等式两边乘(或除)以同一个正数,不等号的方向不变。如果ab,c0,那么 或 。(3)不等式两边乘(或除)以同一个负数,不等号的方向改变。如果 ,那么 或 。性质(2)和(3)可简记为“负变正不变”。名师点拨列不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”、“最多”、“超过”、“不低于”、“不大于”、“不高于”、“大于”、“多”等,准确的选用不等号。此外,对一些实际问题的分析还要注意结合实际,有些不等关系隐含于生活常识之中。一元一次不等式与一次函数:(1)利用一次函数的图象解一元一次不等式 (或 )。(2)利用一次函数的图象解一元一次不等式 (或)学霸经验 本节课我学到 我需要努力的地方是12
链接地址:https://www.77wenku.com/p-126426.html