八年级下册数学升学课程第02讲-一元一次不等式与一元一次不等式组(提高)-教案
《八年级下册数学升学课程第02讲-一元一次不等式与一元一次不等式组(提高)-教案》由会员分享,可在线阅读,更多相关《八年级下册数学升学课程第02讲-一元一次不等式与一元一次不等式组(提高)-教案(15页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第02讲-一元一次不等式与一元一次不等式组授课类型T同步课堂P实战演练S归纳总结教学目标 了解不等式的概念; 掌握一元一次不等式的概念、解法及应用; 掌握一元一次不等式组的解法及应用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、不等式的定义:一般的,用符号“ ”(或“ ”)“”(或“ ”)连接的式子叫做不等式。2、不等式的基本性质:不等式的基本性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变。不等式的基本性质2:不等式的两边都乘(或除以)同
2、一个正数,不等号的方向不变。不等式的基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变。3、不等式的其他性质(1)对称性,也叫互逆性:若 ,则 。(2)传递性:若, ,则 。(3)若 ,则 同号,反之,若 同号,则 ; 若 ,则 异号,反之,若 异号,则。(4)若 ,则,反之,若,则; 若 ,则 ,反之,若,则。4、不等式的解集(1)能使不等式成立的未知数的值,叫做不等式的解。(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。(3)不等式的解与不等式的解集的区别:不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集是指满足这个不等式的未知数的所有值。5、不等式
3、解集的两种表示方法:(1)用不等式表示;(2)用数轴表示。6、一元一次不等式的概念:左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。7、一元一次不等式的解法:(1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)系数化1。8、一元一次不等式与一次函数:(1)利用一次函数的图象解一元一次不等式 (或 )。(2)利用一次函数的图象解一元一次不等式 (或)9、一元一次不等式组的概念:一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。10、一元一次不等式组的解集的概念:一元一次不等式组中各个不等式的解集的公共部
4、分,叫做这个一元一次不等式组的解集。11、一元一次不等式组的解法步骤一:根据不等式的性质求出每一个不等式的解集步骤二:将每一个不等式的解集利用数轴进行合并得到不等式组的解由两个一元一次不等式组成的不等式组,可以归结为下述四种基本类型:(表中)不等式图示解集(大大取大)(小小取小)(大小小大中间找)无解(大大小小解不了)12、一元一次不等式组的应用列不等式组解决实际问题的一般步骤(1)找:找出问题中的不等关系;(2)设:设出未知数;(3)列:根据前面的不等关系列出不等式组;(4)解:解不等式组;(5)答:检验后答出结果。考点一:不等式的基本性质例1、下列不等式变形正确的是()A由ab,得a2b2
5、 B由ab,得|a|b|C由ab,得2a2b D由ab,得a2b2【解析】选:C例2、下列判断中,正确的序号为若ab0,则ab0;若ab0,则a0,b0;若ab,c0,则acbc;若ab,c0,则ac2bc2;若ab,c0,则acbc【解析】答案为:例3、利用不等式的性质把下列不等式化成“xa”或“xa”的形式:(1)2x17; (2)3x7x8;(3)6x112x+6; (4)2x+17x+6【解析】(1)解得:x4;(2)解得:x2;(3)解得:x;(4)解得:x1考点二:一元一次不等式(组)例1、不等式组的解集是x1,则m的取值范围是()Am1 Bm1 Cm0 Dm0【解析】不等式整理得
6、:,由不等式组的解集为x1,得到m+11,解得:m0,故选D例2、已知不等式4xa0的正整数解是1,2,则a的取值范围是()A8a12 B8a12C8a12 D8a12【解析】不等式4xa0的解集是x,因为正整数解是1,2,而只有当不等式的解集为x2,x2.1,x2.2等时,但x3时,其整数解才为1,2,则23,即a的取值范围是8a12,故选B例3、已知不等式组有解,则n的取值范围是n1【解析】不等式组有解,则n的取值范围是 n1,故答案为:n1例4、关于x的两个不等式1与13x0(1)若两个不等式的解集相同,求a的值;(2)若不等式的解都是的解,求a的取值范围【解析】(1)由得:x,由得:x
7、,由两不等式的解集相同,得=,解得:a=1;(2)由不等式的解都是的解,得到,解得:a1例5、解不等式(组),并将解集在数轴上表示出来:(1)+1x3; (2)【解析】(1)去分母得:x5+22x6,解得:x3,在数轴上表示出来为:; (2),由得:x1,由得:x2,故不等式组的解集为2x1,在数轴上表示出来为:考点三:一元一次不等式(组)与一次函数例1、直线y=kx+3经过点A(2,1),则不等式kx+30的解集是()Ax3 Bx3 Cx3 Dx0【解析】选A例2、如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+bkx+6的解集是x3【解析】当x3时,x+bkx
8、+4,即不等式x+bkx+4的解集为x3故答案为:x3例3、如图,函数y=2x+3与y=x+m的图象交于P(n,2)(1)求出m、n的值;(2)直接写出不等式x+m2x+3的解集;(3)求出ABP的面积【解析】(1)y=2x+3过P(n,2)2=2n+3,解得:n=,P(,2),y=x+m的图象过P(,2)2=+m,解得:m=;(2)不等式x+m2x+3的解集为x;(3)当y=2x+3中,x=0时,y=3,A(0,3),y=x中,x=0时,y=,B(0,),AB=3;ABP的面积:AB=考点四:不等式的综合应用例1、为了更好地治理木兰溪水质,保护环境,市治污公司决定购买10台污水处理设备,现有
9、A B两种设备,A B单价分别为a万元/台 b万元/台 月处理污水分别为240吨/月 200吨/月,经调查 买一台A型设备比买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元(1)求a、b的值(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案【解析】(1)由题意,得,解得:答:a=12,b=10;(2)设购买A种设备x台,则购买B种设备(10x)台,由题意,得:012x+10(10x)105,解得:0x2.5,x为非负整数,x=0,
10、1,2 有三种购买方案:方案1:购买A种设0台,购买B种设备10台,方案2:购买A种设1台,购买B种设备9台,方案1:购买A种设2台,购买B种设备8台,(3)由题意,得240x+200(10x)2040,解得:x1,设购买需要的总费用为W万元,由题意,得W=12x+10(10x),=2x+100k=20,W随x的增大而增大,当x=1时,W最小=102,购买A种设1台,购买B种设备9台最省钱例2、某蔬菜培育中心决定向某灾区配送无辐射蔬菜和水果共3200箱,其中水果比蔬菜多800箱(1)求水果和蔬菜各有多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批水果和蔬菜全部运往该乡中小学已知每辆甲
11、种货车最多可装水果400箱和蔬菜100箱,每辆乙种货车最多可装水果和蔬菜各200箱,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元运输部门应选择哪种方案可使运费最少?最少运费是多少元?【解析】(1)设水果有x箱,则蔬菜有(x800)箱,则x+(x800)=2300,解得x=2000,则x800=1200答:水果和蔬菜分别为2000箱和1200箱(2)设租用甲种货车a辆,则租用乙种货车(8a)辆根据题意,得,解得:2a4因为a为整数,所以a=2或3或4,安排甲、乙两种货车时有3种方案设计方案分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 升学 课程 02 一元 一次 不等式 提高 教案
链接地址:https://www.77wenku.com/p-126428.html