八年级下册数学同步课程第01讲-等腰三角形(培优)-教案
《八年级下册数学同步课程第01讲-等腰三角形(培优)-教案》由会员分享,可在线阅读,更多相关《八年级下册数学同步课程第01讲-等腰三角形(培优)-教案(14页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-等腰三角形 授课类型T同步课堂P实战演练S归纳总结教学目标 掌握等腰三角形、等边三角形的性质、判定定理; 掌握含30角的直角三角形的性质定理及其证明; 能够用综合法证明等腰三角形的有关性质及其判定定理。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。(AAS)(2)等腰三角形的两底角相等。即等边对等角。(3)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相
2、重合。即三线合一。(4)等边三角形的三个内角都相等,并且每个角都等于60。2、等腰三角形的判定定理(1)有两条边相等的三角形是等腰三角形。(2)有两个角相等的三角形是等腰三角形。即等角对等边。(3)三个角都相等的三角形是等边三角形。(4)有一个角等于60的等腰三角形是等边三角形。3、在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半。4、反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。考点一:等腰三角形的性质例1、一个等腰三角形的两边长分别为4,8,则它的周长为()A12 B16 C20 D16或20
3、【解析】当4为腰时,4+4=8,故此种情况不存在;当8为腰时,8488+4,符合题意故此三角形的周长=8+8+4=20故选C例2、如图,在ABC中,AB=AC,A=30,E为BC延长线上一点,ABC与ACE的平分线相交于点D,则D的度数为()A15 B17.5 C20 D22.5【解析】ABC的平分线与ACE的平分线交于点D,1=2,3=4,ACE=A+ABC,即1+2=3+4+A,21=23+A,1=3+D,D=A=30=15故选A例3、一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值【解析】原三角形是锐角三角形,最大角是72的情况如图所示:ABC
4、=ACB=72,A=36,AD=BD=BC;原三角形是直角三角形,最大角是90的情况如图所示:ABC=90,A=36,AD=CD=BD;原三角形是钝角三角形,最大角是108的情况如图所示:原三角形是钝角三角形,最大角是126的情况如图所示:ABC=126,C=36,AD=BD=BC;原三角形是钝角三角形,最大角是132的情况如图所示:C=132,ABC=36,AD=BD,CD=CB综上,原三角形最大内角的所有可能值为72,90,108,132,126例4、如图,在ABA1中,B=20,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A
5、3,使得A2A3=A2D;,按此做法进行下去,An的度数为【解析】在ABA1中,B=20,AB=A1B,BA1A=80,A1A2=A1C,BA1A是A1A2C的外角,CA2A1=40;同理可得,DA3A2=20,EA4A3=10,An=故答案为:例5、如图1,RtABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F试判断DEF的形状,并加以证明说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列、中选取一个
6、补充或者更换已知条件,完成你的证明1、画出将BAD沿BA方向平移BA长,然后顺时针旋转90后图形;2、点K在线段BD上,且四边形AKNC为等腰梯形(ACKN,如图2)附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断DEF的形状,并说明理由【解析】DEF是等腰三角形。证明:如图,过点C作CPAC,交AN延长线于点PRtABC中AB=ACBAC=90,ACB=45PCN=ACB,BAD=ACPAMBDABD+BAM=BAM+CAP=90ABD=CAPBADACPAD=CP,ADB=PAD=CE,CE=CP,CN=CN,CPNCEN,P=CEN,CEN=ADBFDE=FEDDEF是
7、等腰三角形附加题:DEF为等腰三角形证明:过点C作CPAC,交AM的延长线于点PRtABC中AB=ACBAC=90,ACB=45,PCN=ACB=ECNAMBD,ABD+BAM=BAM+CAP=90,ABD=CAP,BADACP,AD=CP,D=PAD=EC,CE=CP,又CN=CN,CPNCEN,P=E,D=E,DEF为等腰三角形考点二:等腰三角形的判定 例1、ABC的三边长a,b,c满足关系式(ab)(bc)(ca)=0,则这个三角形一定是()A等腰三角形 B等边三角形C等腰直角三角形 D无法确定【解析】ABC的三边长a,b,c,a、b、c都是正数由(ab)(bc)(ca)=0,得ab=0
8、,即a=b,ABC是等腰三角形;bc=0,即b=c,ABC是等腰三角形;ca=0,即c=a,ABC是等腰三角形;ab=0,bc=0且ca=0,即a=b=c,ABC是等边三角形;等边三角形是特殊的等腰三角形综上所述,ABC一定是等腰三角形故选A例2、如图,在ABC中,AB=AC,A=36,BD、CE分别是ABC、BCD的角平分线,则图中的等腰三角形有()A5个 B4个 C3个 D2个【解析】共有5个(1)AB=ACABC是等腰三角形;(2)BD、CE分别是ABC、BCD的角平分线,EBC=ABC,ECB=BCD,ABC是等腰三角形,EBC=ECB,BCE是等腰三角形;(3)A=36,AB=AC,
9、ABC=ACB=(18036)=72,又BD是ABC的角平分线,ABD=ABC=36=A,ABD是等腰三角形;同理可证CDE和BCD是等腰三角形故选:A例3、如图,ABC中,BF、CF分别平分ABC和ACB,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF和CEF都是等腰三角形;DFB=EFC;ADE的周长等于AB与AC的和;BF=CF其中正确的是(填序号,错选、漏选不得分)【解析】DEBC,DFB=FBC,EFC=FCB,BF是ABC的平分线,CF是ACB的平分线,FBC=DFB,FCE=FCB,DBF=DFB,EFC=ECF,DFB,FEC都是等腰三角形正确;ABC不是等腰
10、三角形,DFB=EFC,是错误的;DFB,FEC都是等腰三角形DF=DB,FE=EC,即有DE=DF+FE=DB+EC,ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC正确,共2个正确的;ABC不是等腰三角形,ABCACB,FBCFCB,BF=CF是错误的;故答案为:例4、如图,以ABC的边AB、AC为直角边向外作等腰直角ABE和ACD,M是BC的中点,请你探究线段DE与AM之间的关系说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列、中选取一个补充或更换已知条件,完成你的证
11、明画出将ACM绕某一点顺时针旋转180后的图形;BAC=90(如图)附加题:如图,若以ABC的边AB、AC为直角边,向内作等腰直角ABE和ACD,其它条件不变,试探究线段DE与AM之间的关系【解析】(1)分三种情况;当BAC=90,M是BC的中点,AM=BM=MC=,EAD=BAC=90,AE=AB,AC=AD,ABCAED,ED=BC,ED=2AM当BAC90,易得ED=2AM当BAC90,易得ED=2AM(2)已知(1)的结论,若BAC=90,可得ED=2AM附加:结合上题可得:2AM=DE,延长CA到F使AF=AC,连接BF易证ABFADE,BF=DE,2AM=BF,2AM=DEP(Pr
12、actice-Oriented)实战演练实战演练 课堂狙击1、等腰三角形的两边长分别为4cm和8cm,则它的周长为()A16cm B17cm C20cm D16cm或20cm【解析】选C2、如图,在ABC中,AB=AC,过点A作ADBC,若1=70,则BAC的大小为()A40 B30 C70 D50【解析】ADBC,C=1=70,AB=AC,B=C=70,BAC=180BC=40故选A3、如图,B=C,1=3,则1与2之间的关系是()A1=22 B312=180C1+32=180 D21+2=180【解析】1=3,B=C,1+B+3=180,21+C=180,21+12=180,312=180
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 同步 课程 01 等腰三角形 培优 教案
文档标签
- 13.3.1等腰三角形
- 杠杆习题+培优
- 青岛版四年级下册数学同步练习册
- 八年级下册数学同步课程第01讲-等腰三角形培优-教案
- 八年级下册数学同步课程第01讲-等腰三角形提高-教案
- 八年级下册数学同步课程第02讲-直角三角形培优-学案
- 八年级下册数学同步课程第02讲-直角三角形培优-教案
- 八年级下册数学升学课程初二-第01讲-三角形的证明培优-学案
- 八年级下册数学升学课程第01讲-三角形的证明提高-学案
- 八年级下册数学同步课程第02讲-直角三角形提高-教案
- 八年级下册数学升学课程第01讲-三角形的证明提高-教案
- 八年级下册数学同步课程第01讲-等腰三角形培优-学案
- 八年级下册数学升学课程初二-第01讲-三角形的证明培优-教案
- 八年级下册数学同步课程第01讲-等腰三角形提高-学案
- 八年级下册数学升学课程第01讲-三角形的证明提高
链接地址:https://www.77wenku.com/p-126430.html