九年级下册数学同步课程讲义第02讲-三角函数的应用(提高)-教案
《九年级下册数学同步课程讲义第02讲-三角函数的应用(提高)-教案》由会员分享,可在线阅读,更多相关《九年级下册数学同步课程讲义第02讲-三角函数的应用(提高)-教案(14页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第02讲-三角函数的应用授课类型T同步课堂P实战演练S归纳总结教学目标 在实际问题中熟练建立解三角形模型; 利用三角函数计算模型中的相关长度; 在常见问题中,能熟练做出辅助线构建模型。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念1、相关概念仰角:视线在水平线上方的角叫仰角俯角:视线在水平线下方的角叫俯角坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比),用字母i表示坡角:坡面与水平面的夹角叫坡角,用表示,则有i_tan 如图所示, ,即坡
2、度是坡角的正切值方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角 2、利用(三角函数)解直角三角形解实际应用题的一般步骤: 弄清题中名词术语的意义(如俯角、仰角、坡角、方向角等),然后根据题意画出几何图形,建立数学模型; 将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; 寻求基础直角三角形,并解这个三角形或设未知数进行求解考点一:解决坡度、坡角实际问题例1、河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB
3、的长为()A12米 B4米 C5米 D6米【解析】A例2、如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连若AB=10米,则旗杆BC的高度为()A5米 B6米 C8米 D(3+)米【解析】设CD=x,则AD=2x,由勾股定理可得,AC=x,AC=3米,x=3,x=3米,CD=3米,AD=23=6米,在RtABD中,BD=8米,BC=83=5米故选A考点二: 方位角问题例1、如图,一艘海轮位于灯塔P的北偏东30方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45方向上的B处,这时,海轮所在的B处与灯塔P的
4、距离为()A40海里 B40海里 C80海里 D40海里【解析】过点P作PCAB于点C,由题意可得出:A=30,B=45,AP=80海里,故CP=AP=40(海里),则PB=40(海里)例2、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30的方向,则海岛C到航线AB的距离CD是()A20海里 B40海里 C20海里 D40海里【解析】根据题意可知CAD=30,CBD=60,CBD=CAD+ACB,CAD=30=ACB,AB=BC=40海里,在RtCBD中,BDC=90,DBC=60,sinDBC=,sin60=,CD=40si
5、n60=40=20(海里)故选:C考点三:测量高度例1、如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30,看这栋楼底部C处的俯角为60,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A160m B120m C300m D160m【解析】过点A作ADBC于点D,BC=BD+CD=160(m)故选A例2、如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60,沿山坡向上走到P处再测得点C的仰角为45,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上求电视塔OC的高度以及此人所在位置点P的铅直高度(测倾器高度忽略不计,结果保留根号
6、式)【解析】作PEOB于点E,PFCO于点F,在RtAOC中,AO=100,CAO=60,CO=AOtan60=100(米)设PE=x米,tanPAB=,AE=2x在RtPCF中,CPF=45,CF=100x,PF=OA+AE=100+2x,PF=CF,100+2x=100x,解得x=(米)答:电视塔OC高为100米,点P的铅直高度为(米)考点四:测量距离和宽度例1、如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45,测得B处发生险情渔船的俯
7、角为30,此时渔政船和渔船的距离AB是()A3000m B3000()m C3000()m D1500m【解析】如图,由题意可知CEBD,CBA=30,CAD=45,且CD=3000m,在RtACD中,AD=CD=3000m,在RtBCD中,BD=3000m,AB=BDAD=30003000=3000(1)(m),故选C例2、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30,测得大楼顶端A的仰角为45(点B,C,E在同一水平直线上),已AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:1.414,1
8、.732)【解析】如图,过点D作DFAB于点F,过点C作CHDF于点H则DE=BF=CH=10m,在直角ADF中,AF=80m10m=70m,ADF=45,DF=AF=70m在直角CDE中,DE=10m,DCE=30,CE=10(m),BC=BECE=70107017.3252.7(m)答:障碍物B,C两点间的距离约为52.7mP(Practice-Oriented)实战演练实战演练 课堂狙击1、如图,滑雪场有一坡角为20的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A200tan20米 B米 C200sin20米 D200cos20米【解析】C2、如图,水库大
9、坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A55m B60m C65m D70m【解析】C3、如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45,则建筑物MN的高度等于()A8()m B8()mC16()m D16()m【解析】A4、如图,已知灯塔M方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A处测得灯塔M在北偏东30方向,行驶1小时后到达B处,此时刚好进入灯塔M的镭射信号区,测得灯塔M在
10、北偏东45方向,则轮船通过灯塔M的镭射信号区的时间为()A(1)小时 B(+1)小时C2小时 D小时【解析】连接MC,过M点作MDAC于D在RtADM中,MAD=30,AD=MD,在RtBDM中,MBD=45,BD=MD,BC=2MD,BC:AB=2MD:(1)MD=2:+1故轮船通过灯塔M的镭射信号区的时间为(+1)小时故选B5、如图,将宽为1cm的纸条沿BC折叠,使CAB=45,则折叠后重叠部分的面积为()Acm2 Bcm2 Ccm2 Dcm2【解析】如图,由题可知ABC是一个顶角为45的等腰三角形,即A=45,AC=AB作CDAB,垂足为D,则CD=1sinA=,=AB,SABC=ABC
11、D=,折叠后重叠部分的面积为cm2故选D6、如图,从热气球C处测得地面A、B两点的俯角分别是30、45,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A200米 B200米C220米 D100()米【解析】由已知,得A=30,B=45,CD=100,CDAB于点D在RtACD中,CDA=90,tanA=,AD=100在RtBCD中,CDB=90,B=45DB=CD=100米,AB=AD+DB=100+100=100(+1)米故选D7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45的防洪大堤(横截面为梯形ABCD)急需加固经调
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 下册 数学 同步 课程 讲义 02 三角函数 应用 提高 教案
链接地址:https://www.77wenku.com/p-126598.html