九年级下册数学同步课程讲义第06讲-二次函数的应用(培优)-教案
《九年级下册数学同步课程讲义第06讲-二次函数的应用(培优)-教案》由会员分享,可在线阅读,更多相关《九年级下册数学同步课程讲义第06讲-二次函数的应用(培优)-教案(14页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第06讲-二次函数的应用 授课类型T同步课堂P实战演练S归纳总结教学目标 掌握二次函数最值的计算; 掌握几何图形面积的最值计算; 熟练运用二次函数解决最大利润问题; 理解二次函数与一元二次方程。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念1、用二次函数的性质解决最值计算问题(1)将函数表达式配方成顶点式,进行求解:开口向上时顶点处取得最小值;开口向下时取最大值。(2)当自变量X的取值范围遇到限制时,则需要先判断对称轴是否被包含在取值范围中,再
2、根据二次函数的增减性计算出函数的最大值、最小值。2、用二次函数的性质解决实际问题利用二次函数的最值确定最大利润、最节省方案等问题是二次函数应用最常见的问题,解决此类问题的关键是认真审题,理解题意,建立二次函数的数学模型,再用二次函数的相关知识解决一般方法步骤:(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围(2)在自变量取值范围内,运用公式法或配方法或对称轴判定法,求出二次函数的最大值或最小值3、二次函数与一元二次方程的关系(1)二次函数yax2bxc(a0),当y0时,就变成了ax2bxc0(a0)(2)ax2bxc0(a0)的解是抛物线与x轴交点的横坐标
3、(3)当b24ac0时,抛物线与x轴有两个不同的交点;当b24ac0时,抛物线与x轴有一个交点;当b24ac0时,抛物线与x轴没有交点考点一:根据实际问题求二次函数表达式例1、心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为()Ay=(x13)2+59.9 By=0.1x2+2.6x+31Cy=0.1x22.6x+76.8 Dy=0.1x2+2.6x+43【解析】D例2、某种品牌的服装进价为每件150元,当售价为每
4、件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()Ay=x2+10x+1200(0x60) By=x210x+1250(0x60)Cy=x2+10x+1250(0x60) Dy=x2+10x+1250(x60)【解析】A考点二:最值计算问题例1、已知二次函数y=x26x+8(1)将y=x26x+8化成y=a(xh)2+k的形式;(2)当0x4时,y的最小值是1,最大值是8;(3)当y0时,写出x的取值范围【解析】(1)y=x26x+8=(x26x+9)9+
5、8=(x3)21; (2)抛物线y=x26x+8开口向上,对称轴为x=3,当0x4时,x=3,y有最小值1;x=0,y有最大值8;(3)y=0时,x26x+8=0,解得x=2或4,当y0时,x的取值范围是2x4故答案为1,8考点三: 几何图形面积的最值问题例1、某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米(1)若苗圃园的面积为72平方米,求x;(2)若平行与墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园
6、的面积不小于100平方米时,直接写出x的取值范围【解析】(1)根据题意得:(302x)x=72,解得:x=3,x=12,302x18,x=12;(2)设苗圃园的面积为y,y=x(302x)=2x2+30x,a=20,苗圃园的面积y有最大值,当x=时,即平行于墙的一边长158米,y最大=112.5平方米;6x11,当x=11时,y最小=88平方米;(3)由题意得:2x2+30x100,302x18解得:6x10例2、如图,已知抛物线y=ax2+x+c经过A(4,0),B(1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得DCA的面积最大?若存在,求出点D
7、的坐标及DCA面积的最大值;若不存在,请说明理由【解析】(1)把A(4,0),B(1,0)代入抛物线的解析式得: 则抛物线解析式为y=x2+x2;(2)存在,理由如下:设D的横坐标为t(0t4),则D点的纵坐标为t2+t2,过D作y轴的平行线交AC于E,连接CD,AD,如图所示,由题意可求得直线AC的解析式为y=x2, E点的坐标为(t,t2),DE=t2+t2(t2)=t2+2t,DAC的面积S=(t2+2t)4=t2+4t=(t2)2+4,当t=2时,S最大=4,此时D(2,1),DAC面积的最大值为4考点四:求最大利润问题例1、某宾馆有50个房间供游客居住,当每个房间定价120元时,房间
8、会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数)(1)直接写出每天游客居住的房间数量y与x的函数关系式(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:当日所获利润不低于5000元,宾馆为游客居住的房间共支出费用没有超过600元,每个房间刚好住满2人问:这天宾馆入住的游客人数最少有多少人?【解析】(1)根据题意,得:y=50x,(0x50,且x为整数);(2)W=(120+10x20
9、)(50x)=10x2+400x+5000=10(x20)2+9000,a=100 当x=20时,W取得最大值,W最大值=9000元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元;(3)由解得20x40当x=40时,这天宾馆入住的游客人数最少,最少人数为2y=2(x+50)=20(人)例2、某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少销售量y(件)与销售单价x(元)的关系如图所示(1)图中点P所表示的实际意义是当售价定
10、为35元/件时,销售数量为300件;销售单价每提高1元时,销售量相应减少20件;(2)请直接写出y与x之间的函数表达式y=20x+1000;自变量x的取值范围为30x50;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?【解析】(1)图中点P所表示的实际意义是:当售价定为35元/件时,销售数量为300件;第一个月的该商品的售价为:20(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为:(400300)(3530)=20(件)故答案为:当售价定为35元/件时,销售数量为300件;20(2)设y与x之间的函数表达式为y=kx+b,将点(30,400)、(3
11、5,300)代入y=kx+b中,得:,y与x之间的函数表达式为y=20x+1000当y=0时,x=50,自变量x的取值范围为30x50故答案为:y=20x+1000;30x50(3)设第二个月的利润为w元,由已知得:w=(x20)y=(x20)(20x+1000)=20x2+1400x20000=20(x35)2+4500,200, 当x=35时,w取最大值,最大值为4500故第二个月的销售单价定为35元时,可获得最大利润,最大利润是4500元考点五:二次函数与一元二次方程例1、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(ab),则二次函数y=x2+mx+n
12、中,当y0时,x的取值范围是()Axa Bxb Caxb Dxa或xb【解析】C例2、若二次函数y=ax2+bx+c(a0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是()A0k4 B3k1Ck3或k1 Dk4【解析】抛物线的对称轴为x=1,顶点坐标为(1,4),设抛物线的解析式为:y=a(x+1)2+4,把(1,0)代入解析式得,a=1,解析式为:y=x22x+3,方程=x22x+3=k有两个不相等的实根,=4+124k0,解得:k4故选:DP(Practice-Oriented)实战演练实战演练 课堂狙击1、如图所示是一个抛物线形桥拱的示意图,
13、在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()Ay= By= Cy= Dy=【解析】A2、已知抛物线y=x2x1,与x轴的一个交点为(m,0),则代数式m2m+2014的值为()A2013 B2015 C2014 D2010【解析】B3、二次函数y=mx2+x2m(m是非0常数)的图象与x轴的交点个数为()A0个 B1个 C2个 D1个或2个【解析】故选C4、若关于x的一元二次方程(x2)(x3)=m有实数根x1、x2,且x1x2,则下列结论中错误的是( )A当m=0时,x1=2,x2=3 Bm C当m0时,2x1x23
14、 D二次函数y=(xx1)(xx2)+m的图象与x轴交点的坐标为(2,0)和(3,0)【解析】C5、如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直)如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是()A2m B3m C4m D5m【解析】B6、如图已知A1,A2,A3,An是x轴上的点,且OA1=A1A2=A2A3=A3A4=An1An=1,分别过点A1,A2,A3,An作x轴的垂线交二次函数y=x2(x0)的图象于点P1,P2,P3,Pn,若记OA1P1的面积为S1,过点P1作P1B1A2P2于点B1,记P1B1P2的面积
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 下册 数学 同步 课程 讲义 06 二次 函数 应用 培优 教案
链接地址:https://www.77wenku.com/p-126605.html