九年级下册数学升学课程讲义第01讲-直角三角形的边角关系(培优)-教案
《九年级下册数学升学课程讲义第01讲-直角三角形的边角关系(培优)-教案》由会员分享,可在线阅读,更多相关《九年级下册数学升学课程讲义第01讲-直角三角形的边角关系(培优)-教案(15页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-直角三角形的边角关系授课类型T同步课堂P实战演练S归纳总结教学目标 掌握三角函数的几何意义; 熟练进行三角函数值的相关计算; 熟练利用边角关系进行解三角形; 熟练应用边角关系构造直角三角形解决实际问题; 进一步提高数学建模、实际应用的能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一) 三角函数的概念1、正弦,余弦,正切的概念(及书写规范)如图,在 中,(1) (2) (3) 2、定义中应该注意的几个问题(1)sinA、cosA
2、、tanA是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形)(2)sinA、 cosA、tanA是一个比值(数值)(3)sinA、 cosA 、tanA的大小只与A的大小有关,而与直角三角形的边长无关。 (二)特殊角的三角函数值度 数sincostan 30 45160(三)三角函数之间的关系1、余角关系:在A+B=90时 2、同角关系sin2A+cos2A=1. (四)斜坡的坡度1、仰角、俯角、坡度、坡角和方向角(1)仰角:视线在水平线上方的角叫仰角俯角:视线在水平线下方的角叫俯角(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比),用字母i表示坡角:坡面与水平面的夹角
3、叫坡角,用表示,则有i_tan 如图所示, ,即坡度是坡角的正切值(3)方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角(五)解三角形及其应用1、解直角三角形应用题的步骤(1)根据题目已知条件,画出平面几何图形,找出已知条件中各量之间的关系(2)若是直角三角形,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,构造直角三角形进行解决2、解三角形关系解直角三角形时,正确选择关系式是关键:(1)求边时一般用未知边比已知边,去找已知角的某一个三角函数;(2)求角时一般用已知边比已知边,去找未知角
4、的某一个三角函数;(3)求某些未知量的途径往往不唯一,其选择的原则:尽量直接使用原始数据;计算简便;若能用乘法应避免除法 3、利用(三角函数)解直角三角形解实际应用题的一般步骤: 弄清题中名词术语的意义(如俯角、仰角、坡角、方向角等),然后根据题意画出几何图形,建立数学模型; 将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; 寻求基础直角三角形,并解这个三角形或设未知数进行求解考点一:锐角三角函数例1、已知A为锐角,且tanA=,则A的取值范围是()A0A30 B30A45C45A60 D60A90【解析】C例2、
5、如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值=3,tanAPD的值=2【解析】四边形BCED是正方形,DBAC,DBPCAP,=3,连接BE,四边形BCED是正方形,DF=CF=CD,BF=BE,CD=BE,BECD,BF=CF,根据题意得:ACBD,ACPBDP,DP:CP=BD:AC=1:3,DP:DF=1:2,DP=PF=CF=BF,在RtPBF中,tanBPF=2,APD=BPF,tanAPD=2,故答案为:3,2例3、计算:sin45+cos230+2sin60【解析】1+考点二: 坡度、坡角实际问题例1、如图,某水渠的横断
6、面是梯形,已知其斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,现测得放水前的水面宽EF为3.8米,当水闸放水后,水渠内水面宽GH为6米则放水后水面上升的高度是()米A1.2 B1.1 C0.8 D2.2【解析】过点E作EMGH于点M,过点F作FNGH于点N,可得四边形EFNM为矩形,则MN=EF,设ME=FN=x,在RtGME中,斜坡AD的坡度为1:1.2,ME:GM=1:1.2,GM=1.2x,在RtNHF中,斜坡BC的坡度为1:0.8,NF:NH=1:0.8,NH=0.8x,则GH=1.2x+0.8x+3.8=6,解得:x=1.1故选B例2、如图,某仓储中心有一斜坡AB,其坡度为
7、i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高(结果保留根号)【解析】(1)坡度为i=1:2,AC=4m,BC=42=8m(2)作DSBC,垂足为S,且与AB相交于HDGH=BSH,DHG=BHS,GDH=SBH,=,DG=EF=2m,GH=1m,DH=m,BH=BF+FH=3.5+(2.51)=5m,设HS=xm,则BS=2xm,x2+(2x)2=52,x=mDS=+=2m考点三:解三角形例1、如图,ABC中AB=AC
8、=4,C=72,D是AB中点,点E在AC上,DEAB,则cosA的值为()A B C D【解析】ABC中,AB=AC=4,C=72,ABC=C=72,A=36,D是AB中点,DEAB,AE=BE,ABE=A=36,EBC=ABCABE=36,BEC=180EBCC=72,BEC=C=72,BE=BC,AE=BE=BC设AE=x,则BE=BC=x,EC=4x在BCE与ABC中,BCEABC,=,即=,解得x=22(负值舍去),AE=2+2在ADE中,ADE=90,cosA=故选C例2、如图,ABC中,ACB=90,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E(1)求线段
9、CD的长;(2)求cosABE的值【解析】(1)在ABC中,ACB=90,sinA=,而BC=8,AB=10,D是AB中点,CD=AB=5;(2)在RtABC中,AB=10,BC=8,AC=6,D是AB中点,BD=5,SBDC=SADC,SBDC=SABC,即CDBE=ACBC,BE=,在RtBDE中,cosDBE=,即cosABE的值为考点四:三角函数综合应用例1、如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45,测得B处发生险情渔船的俯
10、角为30,此时渔政船和渔船的距离AB是()A3000m B3000()mC3000()m D1500m【解析】如图,由题意可知CEBD,CBA=30,CAD=45,且CD=3000m,在RtACD中,AD=CD=3000m,在RtBCD中,BD=3000m,AB=BDAD=30003000=3000(1)(m),故选C例2、如图,在坡度i=1:的斜坡AB上立有一电线杆EF,工程师在点A处测得E的仰角为60,沿斜坡前进20米到达B,此时测得点E的仰角为15,现要在斜坡AB上找一点P,在P处安装一根拉绳PE来固定电线杆,以使EF保持竖直,为使拉绳PE最短,则FP的长度约为()(参考数据:1.414
11、,1.732)A3.7米 B3.9米 C4.2米 D5.7米【解析】作BDAC,如右图所示,斜坡AB的坡度i=1:,tanBAC=,BAC=30,EAC=60,EAF=30,要使点E到AB的距离最短,EPAB于点P,tanEAP=,AP=,EBD=15,BDAC,DBA=BAC=30,EBP=45,EP=PB,AP+PB=AB=20米,+EP=20,解得,EP=1010,又EFBC,B=90BAC=60,EFP=60,tanEFP=,即tan60=,解得,PF4.2米,故选CP(Practice-Oriented)实战演练实战演练 课堂狙击1、如图,在RtABC中,BAC=90,ADBC于点D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 下册 数学 升学 课程 讲义 01 直角三角形 边角 关系 培优 教案
链接地址:https://www.77wenku.com/p-126618.html