九年级下册数学升学课程讲义第02讲-二次函数(培优)-教案
《九年级下册数学升学课程讲义第02讲-二次函数(培优)-教案》由会员分享,可在线阅读,更多相关《九年级下册数学升学课程讲义第02讲-二次函数(培优)-教案(16页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第02讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数项可以同时为零; x的取值范
2、围是全体实数(二) 二次函数的图像与性质1、二次函数图像的基本性质二次函数yax2bxc(a,b,c为常数,a0)图象(a0)(a0)开口方向开口向上开口向下对称轴直线x直线x顶点坐标增减性当x时,y随x的增大而减小;当x时,y随x的增大而增大当x时,y随x的增大而增大;当x时,y随x的增大而减小最值当x时,y有最小值当x时,y有最大值2、二次函数图像的平移 方法一: 总结:在原有函数的基础上“值正右移,负左移;值正上移,负下移” 方法二:沿轴平移:向上(下)平移个单位,变成(或)沿轴平移:向左(右)平移个单位,变成(或)总结:概括成八个字“左加右减,上加下减” 3、二次函数的图象与各项系数之
3、间的关系 (1) 二次项系数的正负决定开口方向,的大小决定开口的大小(2)一次项系数:在确定的前提下,决定了抛物线对称轴的位置, “左同右异”。 (3) 常数项:决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的(三) 二次函数的表达式1、一般式:(,为常数,);2、顶点式:(,为常数,);3、两根式:(,是抛物线与轴两交点的横坐标).使用条件:1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式(四) 二次函数的应用解题
4、一般方法步骤(先构造二次函数模型):(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围(2)在自变量取值范围内,运用公式法或配方法或对称轴判定法,求出二次函数的最大值或最小值(五) 二次函数与一元二次方程(1)二次函数yax2bxc(a0),当y0时,就变成了ax2bxc0(a0)(2)ax2bxc0(a0)的解是抛物线与x轴交点的横坐标(3)当0时,有两个不同的交点;当0时,有一个交点;当c0时,抛物线与x轴没有交点考点一: 二次函数的定义例1、若y=(1+m)是二次函数,且开口向下,则m的值为()A3 B3 C+3 D0【解析】B例2、下列函数关系中,可以
5、看做二次函数y=ax2+bx+c模型的是()A在一定距离内,汽车行驶的速度与行驶的时间的关系B我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D圆的周长与半径之间的关系【解析】C考点二: 二次函数的图像与性质例1、一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()A B C D【解析】C例2、如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(1,0),与y轴的交点B在(0,2)和(0,1)之间(不包括这两点),对称轴为直线x=1下列
6、结论:abc0; 4a+2b+c0 ;4acb28a ;a;bc其中含所有正确结论的选项是()A B C D【解析】函数开口方向向上,a0;对称轴在y轴右侧ab异号,抛物线与y轴交点在y轴负半轴,c0,abc0,故正确;图象与x轴交于点A(1,0),对称轴为直线x=1,图象与x轴的另一个交点为(3,0),当x=2时,y0,4a+2b+c0,故错误;图象与x轴交于点A(1,0),当x=1时,y=(1)2a+b(1)+c=0,ab+c=0,即a=bc,c=ba,对称轴为直线x=1=1,即b=2a,c=ba=(2a)a=3a,4acb2=4a(3a)(2a)2=16a208a04acb28a故正确图
7、象与y轴的交点B在(0,2)和(0,1)之间,2c123a1,a;故正确a0,bc0,即bc;故正确;故选:D例3、若抛物线y=x22x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()Ay=(x2)2+3 By=(x2)2+5 Cy=x21 Dy=x2+4【解析】相当于把抛物线向左平移有关单位,再向下平移3个单位,原抛物线图象的解析式应变为y=(x1+1)2+23=x21,故答案为C考点三: 二次函数的表达式例1、把二次函数y=x2x+3配方化为y=a(xh)2+k形式()Ay=(x2)2+2 By=(x2)2+4 C
8、y=(x+2)2+4 Dy=(x1)2+3【解析】C例2、二次函数图象如图所示,则其解析式是()Ay=x2+2x+4 By=x2+2x+4Cy=x22x+4 Dy=x2+2x+3【解析】A考点四: 二次函数的应用例1、将抛物线y=x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()种A6 B5 C4 D3【解析】B例2、某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFB
9、CG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A B C D【解析】SAEF=AEAF=x2,SDEG=DGDE=1(3x)=,S五边形EFBCG=S正方形ABCDSAEFSDEG=9x2=x2+x+,则y=4(x2+x+)=2x2+2x+30,AEAD,x3,综上可得:y=2x2+2x+30(0x3)故选:A例3、某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出据市场调查,若按每个玩具280元销售时,每月可销售300个若销售单价每降低1元,每月可多售出2个据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(
10、个)160200240300每个玩具的固定成本Q(元)60484032(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?【解析】(1)设y=kx+b,则(280,300),(279,302)满足函数关系式,得得,产销量y(个)与销售单价x (元)之间的函数关系式为y=2x+860(2)设Q=,将Q=60,y=160代入得到m=9600,此时Q=(3)
11、当Q=30时,y=320,由(1)可知y=2x+860,所以x=270,即销售单价为270元,由于=,成本占销售价的(4)若y400,则Q,即Q24,固定成本至少是24元,4002x+860,解得x230,即销售单价最低为230元考点五:二次函数与一元二次方程例1、两个不相等的实根,则常数k的取值范围是()A0k4 B3k1 Ck3或k1 Dk4【解析】由图象可知,抛物线的对称轴为x=1,顶点坐标为(1,4),设抛物线的解析式为:y=a(x+1)2+4,把(1,0)代入解析式得,a=1,解析式为:y=x22x+3,方程=x22x+3=k有两个不相等的实根,=4+124k0,解得:k4故选:D例
12、2、如图,一段抛物线y=x(x3)(0x3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180得到C2,交x轴于A2;将C2绕A2旋转180得到C3,交x轴于A3,如此进行下去,得到一条“波浪线”若点P(41,m)在此“波浪线”上,则m的值为()A2 B2 C0 D【解析】当y=0时,x(x3)=0,解得x1=0,x2=3,则A1(3,0),OA1=3,C1绕A1旋转180得到C2,A1A2=OA1=3,则OA2=6,A2(6,0),C2的解析式为y=(x3)(x6)(3x6),同样可得OA13=39,OA14=42,则A13(39,0),A14(42,0),C14的解析式为y=(x3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 下册 数学 升学 课程 讲义 02 二次 函数 培优 教案
链接地址:https://www.77wenku.com/p-126622.html