初中数学九年级上册讲义第15讲-反比例函数与反比例函数图像(培优)-教案
《初中数学九年级上册讲义第15讲-反比例函数与反比例函数图像(培优)-教案》由会员分享,可在线阅读,更多相关《初中数学九年级上册讲义第15讲-反比例函数与反比例函数图像(培优)-教案(14页珍藏版)》请在七七文库上搜索。
1、 学科教师辅导讲义学员编号: 年 级:九年级 课 时 数:3学员姓名:辅导科目:数学学科教师: 授课主题第15讲-反比例函数与反比例函数图像授课类型T同步课堂P实战演练S归纳总结教学目标理解反比例函数的概念,能判断两个变量之间的关系是否是反比例函数关系;能根据已知条件确定反比例函数的表达式及作出函数图像;掌握函数图像的性质与系数k的几何意义。授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架 二、知识概念 (一)反比例与反比例函数 1、反比例 如果两个变量的每一组对应值的乘积是一个非零常数,那么这两个变量成反比例,用数学符号语言记为xy=k,或 (k0)。 成反比例
2、的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。 2、反比例函数 (1)定义 一般地,形如(为常数,)的函数称为反比例函数。还可以写成。也可以写成xyk, 它表明在反比例函数中自变量x与其对应函数值y之积,总等于已知常数k. (2)反比例函数解析式的特征 等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1. 比例系数 自变量的取值为一切非零实数。 函数的取值是一切非零实数。 (3)待定系数法 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)。 (二)反比例函数的图像与性质 1、图像的画
3、法:描点法 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数) 描点(有小到大的顺序) 连线(从左到右光滑的曲线)2、图像特征:(1)反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。(2)反比例函数的图像是是轴对称图形(对称轴是或),也是中心对称图形。(3)系数的几何意义:过双曲线 ()上任意引轴轴的垂线,所得矩形面积为。典例分析 考点一:反比关系与反比例函数定义例1、下列函数关系中是反比例函数的是( ) A.等边三角形面积S与边长的关系 B.直角三角形两锐角A与B的关系 C.长方形面积一
4、定时,长与宽的关系 D.等腰三角形顶角A与底角B的关系【解析】 C例2、下列函数是不是反比例函数,为什么?(1) (2) (3)xy21 (4) (5)(6) (7)yx4 (8)【解析】(2)(3)(5)(8)是反比例函数。例3、当m取什么值时,函数是反比例函数?【解析】m的取值必须满足两个条件,即m20且3m21;解得m2考点二:反比例函数的表达式例1、如果函数y=m是一个经过二、四象限的反比例函数,则求m的值和反比例函数的解析式【解析】m25=1,m0,解得m=2,解析式为y=例2、已知函数y=2y1y2,y1与x+1成正比例,y2与x成反比例,当x=1时,y=4,当x=2时,y=3,求
5、y与x的函数关系式【解析】设y1=k1(x+1),y2=y=2y1y2,y=2k1(x+1) y=(x+1), 即y=x+考点三:反比例函数的图像与性质例1、反比例函数(m为常数)当x0时,y随x的增大而增大,则m的取值范围是() Am0 B C Dm【解析】根据题意得:12m0,解得:m故选:C例2、如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1y2时,x的取值范围是() Ax2或x2 Bx2或0x2 C2x0或0x2 D2x0或x2【解析】反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为2,点B的横
6、坐标为2,故选D例3、关于x的函数y=k(x+1)和y=(k0)在同一坐标系中的图象大致是() A B C D【解析】D考点四:系数“k”的几何意义(初步)例1、如图,直线y=x2与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A,连接OA若SAOB:SBOC=1:2,则k的值为() A2 B3 C4 D6【解析】直线y=x2与y轴交于点C,与x轴交于点B,C(0,2),B(2,0),SBOC=OBOC=22=2,SAOB:SBOC=1:2,SAOB=SBOC=1,2yA=1,yA=1,把y=1代入y=x2,得1=x2,解得x=3,A(3,1)反比例函数y=的图象过点A,
7、k=31=3故选B例2、如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若ADO的面积为1,D为OB的中点,则k的值为() A B C3 D4【解析】过点B作BEx轴于点E,D为OB的中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1,ADOC=1,()x=1,解得k=,故选:BP(Practice-Oriented)实战演练实战演练 课堂狙击1、下列表达式中,表示是的反比例函数的是( ) . 是常数, A.B. C.D.【解析】 D.2、如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()
8、A两条直角边成正比例 B两条直角边成反比例 C一条直角边与斜边成正比例 D一条直角边与斜边成反比例【解析】B3、若是反比例函数,则、的取值是 ( ) A. B. C . D. 【解析】D.4、函数是反比例函数,则m的值是() Am=1 Bm=1 Cm= Dm=1【解析】m10,m22=1故选:D5、已知函数y=的图象如图,以下结论:m0; 在每个分支上y随x的增大而增大;若点A(1,a)、点B(2,b)在图象上,则ab;若点P(x,y)在图象上,则点P1(x,y)也在图象上其中正确的个数是() A4个 B3个 C2个 D1个【解析】正确,错误,故选:B6、如图,已知点A是双曲线y=在第一象限的
9、分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化设点C的坐标为(m,n),则m,n满足的关系式为() An=2m Bn= Cn=4m Dn=【解析】由反比例函数的性质可知,A点和B点关于原点对称,点C的坐标为(m,n),点A的坐标为(,n),点B的坐标为(,n),根据图象可知,B点和C点的横坐标相同,=m,即n=故选:B7、如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x0)上的一个动点,PBy轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会() A逐渐增大 B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 九年级 上册 讲义 15 反比例 函数 图像 培优 教案
文档标签
- 第26反比例函数
- 26.1反比例函数
- 反比例习题
- 初中数学九年级上册讲义第16讲-反比例函数的应用培优-学案
- 初中数学九年级上册讲义第07讲-反比例函数提高-教案
- 第27章反比例函数
- 初中数学九年级上册讲义第14讲-投影与视图提高-教案
- 初中数学九年级上册讲义第16讲-反比例函数的应用提高-教案
- 反比例函数ppt课件
- 6.1反比例函数
- 初中数学九年级上册讲义第16讲-反比例函数的应用培优-教案
- 初中数学九年级上册讲义第06讲-投影与视图提高-教案
- 初中数学九年级上册讲义第07讲-反比例函数培优-学案
- 初中数学九年级上册讲义第07讲-反比例函数培优-教案
- 初中数学九年级上册讲义第07讲-反比例函数提高-学案
- 反比例函数复习
- 6.1反比例函数 教案
- 11.2反比例函数
- 反比例函数6.12
- 反比例函数 试题
链接地址:https://www.77wenku.com/p-126666.html