初中数学九年级上册讲义第12讲-相似三角形的判定(培优)-教案
《初中数学九年级上册讲义第12讲-相似三角形的判定(培优)-教案》由会员分享,可在线阅读,更多相关《初中数学九年级上册讲义第12讲-相似三角形的判定(培优)-教案(13页珍藏版)》请在七七文库上搜索。
1、 学科教师辅导讲义学员编号: 年 级:九年级 课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第12讲-相似三角形的判定授课类型T同步课堂P实战演练S归纳总结教学目标 掌握相似三角形的三种判定方法; 熟练应用三种判定方法进行解题; 提高学生几何综合证明的能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架 二、知识概念(一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、相似用“”表示,读作“相似于
2、”; 5、相似三角形的对应边之比叫做相似比,书写对应边的比时,一定要找准对应边。(二)相似三角的判定方法 1、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似 2、如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似 3、如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似 (三)相似三角形基本类型 1、平行线型:常见的有如下两种,DEBC,则ADEABC 2、相交线型:常见的有如下四种情形 (1)如图,已知1=B,则由公共角A得,ADEABC (2)如下左图,已知1=B,则由公共角A得,ADCACB
3、 (3)如下右图,已知B=D,则由对顶角1=2得,ADEABC 3、旋转型:已知BAD=CAE,B=D,则ADEABC, 右图为常见的基本图形 4、母子型:已知ACB=90,ABCD,则CBDABCACD 5、斜交型: 如图:其中1=2,则ADEABC称为“斜交型”的相似三角形。 (有“反A共角型”、“反A共角共边型”、 “蝶型”) 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”) 典例分析 考点1:三角形相似判定方法的运用例1、如图,在ABC中,ACB=90,CDAB于点D,则图中相似三角形共有() A1对 B2对 C3对 D4对【解析】C ABCAC
4、D,ACDCBD,ABCCBD,所以有三对相似三角形例2、如图,下列条件不能判定ADBABC的是() AABD=ACB BADB=ABC CAB2=ADAC D=【解析】 D 根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可例3、已知:在梯形ABCD中,ADBC,ABC=90,BC=2AD,E是BC的中点,连接AE、AC(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:AOECOF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形【解析】(1)由点E是BC的中点,BC=2AD,可证得四边形A
5、ECD为平行四边形,即可得AOECOF; (2)连接DE,易得四边形ABED是平行四边形,又由ABE=90,可证得四边形ABED是矩形,根据矩形的性质,易证得EF=GD=GE=DF,则可得四边形EFDG是菱形例4、如图,在ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD(1)通过计算,判断AD2与ACCD的大小关系; (2)求ABD的度数【解析】(1)(1)先求得AD、CD的长,然后再计算出AD2与ACCD的值, 从而可得到AD2与ACCD的关系;(2)AD=BC,AD2=ACCD,BC2=ACCD,即又C=C,BCDACB,DBC=ADB=CB=ADA=ABD,C=BDC
6、设A=x,则ABD=x,DBC=x,C=2xA+ABC+C=180,x+2x+2x=180解得:x=36ABD=36 本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用考点2:网格图中相似三角形的判定例1、下列四个三角形中,与图中的三角形相似的是() A B C D【解析】B. 此题考查三边对应成比例,两三角形相似判定定理的应用例2、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1
7、,则新矩形与原矩形不相似对于两人的观点,下列说法正确的是()A两人都对B两人都不对C甲对,乙不对D甲不对,乙对【解析】A例3、如图,方格纸中每个小正方形的边长为1,ABC和DEF的顶点都在方格纸的格点上(1)判断ABC和DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)【解析】(1)首先根据小正方形的边长,求出ABC和DEF的三边长,然后判断它们是否对应成比例.(2)答案不唯一,下面6个三角形中的任意2个均可;DP
8、2P5,P5P4F,DP2P4,P5P4D,P4P5P2,FDP1考点3:动态探究问题 例1、如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与ABC相似,则点E的坐标不可能是()A(6,0)B(6,3)C(6,5)D(4,2)【解析】B例2、在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0t6),那么当t为何值时,APQ与ABD相似?说明理由【解析】由题意可设AP=2tcm,DQ=tc
9、m,又由AB=12cm,AD=6cm,即可求得AQ的值, 当 =时,APQABD, =,解得:t=3; 当=时,APQADB,=,解得:t=1.2 当t=3或1.2时,APQ与ABD相似P(Practice-Oriented)实战演练实战演练 课堂狙击1、下列命题中,是真命题的为() A锐角三角形都相似 B直角三角形都相似 C等腰三角形都相似 D等边三角形都相似【解析】D2、 如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F过点E作EGBC,交AB于G,则图中相似三角形有() A4对 B5对 C6对 D7对【解析】图中相似三角形有ABCCDA,AGEABC,AFEC
10、BE,BGEBAF,AGECDA共5对4、如图,已知AB=AC,A=36,AB的中垂线MD交AC于点D、交AB于点M下列结论:BD是ABC的平分线;BCD是等腰三角形;ABCBCD;AMDBCD正确的有()个 A4 B3 C2 D1【解析】B正确;错误 首先由AB的中垂线MD交AC于点D、交AB于点M,求得ABD是等腰三角形,即可求得ABD的度数,又由AB=AC,即可求得ABC与C的度数,则可求得所有角的度数,可得BCD也是等腰三角形,则可证得ABCBCD 此题考查了线段垂直平分线的性质,等腰三角形的性质,以及相似三角形的判定与性质等知识此题综合性较强,但难度不大,解题的关键是注意数形结合思想
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 九年级 上册 讲义 12 相似 三角形 判定 培优 教案
链接地址:https://www.77wenku.com/p-126679.html