中考数学一轮复习讲义第01讲-实数(提高)-教案
《中考数学一轮复习讲义第01讲-实数(提高)-教案》由会员分享,可在线阅读,更多相关《中考数学一轮复习讲义第01讲-实数(提高)-教案(15页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:中 考课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-实数授课类型T同步课堂P实战演练S归纳总结教学目标 了解实数的分类; 掌握实数的性质及应用; 掌握二次根式的概念、性质及运算。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、实数的概念及分类有理数和无理数统称为实数,实数有两种分类方法。(1)按定义分类: (2)按正负分类: 2、实数的性质在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全相同。(1)相反数: 与 表示任意一对
2、相反数;(2)绝对值: ;(3)倒数:如果表示一个非零数,那么与 互为倒数。有关性质:(1) 与 互为相反数 ;(2) 与互为倒数;(3) ;(4)互为相反数的两个数的绝对值相等,即 ;(5)正数的倒数是正数,负数的倒数是负数,零没有倒数。3、实数的运算及化简:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数任然适用。4、实数与数轴的关系:每个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。5、利用实数轴比较实数的大小在数轴上,右边的点表示的数总比左边的点表示的数大。正
3、实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数相比较,绝对值大的反而小。6、二次根式的概念:一般地,形如 的式子叫做二次根式, 叫做被开方数。7、积的算术平方根:积的算术平方根的性质: ,即积的算术平方根,等于积中各因式的算术平方根的积。8、商的算术平方根:商的算术平方根的性质: 9、最简二次根式的概念一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式称为最简二次根式。化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。10、二次根式的乘法与除法二次根式的乘法法则: :二次根式的除法法则: 11、分母有理化(1)有理化因式:两个含有根式
4、的代数式相乘,如果它们的积不含有根式,那么这两个代数式互为有理化因式。如: 与,和。(2)分母有理化的依据是:分式的基本性质;(3)分母有理化的方法是:将分子和分母都乘分母的有理化因式,化去分母中的根号。12、二次根式的加减法二次根式加减法法则:二次根式相加减,应先把各个二次根式化成最简二次根式,然后把被开方数相同的二次根式分别合并。(二次根式的加减与整式的加减相类似。)13、二次根式的混合运算二次根式的运算顺序与实数的运算顺序一样,先算乘方,再算乘除,最好算加减,有括号的先算括号里面的。多项式乘法法则和乘法公式对二次根式的运算同样适用。考点一:实数的概念及性质例1、把下列各数填入它所在的数集
5、内:,0.1010010001,0,(2.28),|4|,32正数集合:(2.28) 负分数集合:非正整数集合:0,|4|,32; 无理数集合:,0.1010010001【解析】故答案为:(2.28);0,|4|,32;,0.1010010001例2、1的相反数是1,绝对值是1的算术平方根是2,的立方根的相反数是2【解析】1的相反数是 1,绝对值是 1的算术平方根是 2,的立方根的相反数是2,故答案为:1,1,2,2考点二:实数与数轴例1、实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()Aa2 Ba3 Cab Dab【解析】故选:D例2、如图,四个实数m,n,p,q在数轴上对应的点
6、分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()AP BQ Cm Dn【解析】n+q=0,n和q互为相反数,0在线段NQ的中点处,绝对值最大的点P表示的数p,故选A例3、已知实数a在数轴上的位置如图所示,化简的结果是12a【解析】由图知:1a0,则1a0,a0,=1a+(a)=12a考点三:实数的运算例1、计算下列各式(1)+(2)0()2+|1|; (2)|3|+()0【解析】(1)2 (2)例2、计算下列各题(1)+4; (2)|2|()0+(3)(+)(); (4)(2)2【解析】(1)2; (2)31; (3)4; (4)234例3、计算:(1)|
7、2|(3)0+(1)2015(2)【解析】(1)9; (2)204考点四:二次根式的概念例1、使二次根式有意义的x的取值范围是()A x1 Bx1 Cx1 Dx1【解析】由题意得,x10,解得x1,故选:D例2、若二次根式是最简二次根式,则最小的正整数a=2【解析】二次根式是最简二次根式,则最小的正整数a=2,故答案为:2例3、把下列各式化成最简二次根式:(1); (2)【解析】(1)原式=; (2)原式=考点五:二次根式的化简求值及混合运算例1、已知a2b2=,ab=,则a+b= 【解析】 例2、若x=2,则代数式x2+1的值为 【解析】 例3、先化简,再求值:,其中a=+1【解析】=,当时
8、,原式=例4、(1)已知x=+2,求代数式(94)x2+(2)x+的值(2)先化简,再求值:(a2b+ab),其中a=+2,b=2【解析】(1)原式=(94)(+2)2+(2)(2+)+=(2)原式=ab(a+1)=ab(a+1)(a+1)=ab,a=+2,b=2,上式=(+2)(2)=54=1例5、(1)计算()2+()0+|(2)已知a=,求的值【解析】(1)()2+()0+|=+1+2=3;(2)=(a1),a=2,a1=21=10,原式=(a1)=a1,把a=2代入上式得,a1=1=3P(Practice-Oriented)实战演练实战演练 课堂狙击1. 下列各组数中,互为相反数的是(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 一轮 复习 讲义 01 实数 提高 教案
链接地址:https://www.77wenku.com/p-126747.html