初二数学寒假班讲义第06讲-直角三角形(提高)-教案
《初二数学寒假班讲义第06讲-直角三角形(提高)-教案》由会员分享,可在线阅读,更多相关《初二数学寒假班讲义第06讲-直角三角形(提高)-教案(14页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第06讲-直角三角形授课类型T同步课堂P实战演练S归纳总结教学目标 掌握直角三角形的性质与判定方法; 进一步掌握推理证明的方法,培养演绎推理能力;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。定理:有两个角互余的三角形是直角三角形。2、勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的平方。3、勾股定理的逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。4、逆命题、逆
2、定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。5、斜边、直角边定理定理:斜边和一条直角边分别相等的两个直角三角形全等。简述为“斜边、直角边定理”或“HL”定理。考点一:直角三角形全等的判定例1、下列条件不可以判定两个直角三角形全等的是()A两条直角边对应相等 B两个锐角对应相等C一条直角边和它所对的锐角对应相等 D一个锐角和锐角所对的直角边对应相等【解析】选B例2、下列可以判定两个直角三角形全
3、等的条件是()A斜边相等 B面积相等C两对锐角对应相等 D两对直角边对应相等【解析】选:D例3、在如图中,AB=AC,BEAC于E,CFAB于F,BE、CF交于点D,则下列结论中不正确的是()AABEACF B点D在BAC的平分线上CBDFCDE D点D是BE的中点【解析】选D例4、如图,AB=12,CAAB于A,DBAB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后CAP与PQB全等【解析】CAAB于A,DBAB于B,A=B=90,设运动x分钟后CAP与PQB全等;则BP=xm,BQ=2xm,则AP=(12x)m,分两种情
4、况:若BP=AC,则x=4,AP=124=8,BQ=8,AP=BQ,CAPPBQ;若BP=AP,则12x=x,解得:x=6,BQ=12AC,此时CAP与PQB不全等;综上所述:运动4分钟后CAP与PQB全等;故答案为:4例5、如图,A=B=90,E是AB上的一点,且AE=BC,1=2(1)RtADE与RtBEC全等吗?并说明理由;(2)CDE是不是直角三角形?并说明理由【解析】(1)全等,理由是:1=2,DE=CE,A=B=90,AE=BC,RtADERtBEC;(2)是直角三角形,理由是:RtADERtBEC,3=4,3+5=90,4+5=90,DEC=90,CDE是直角三角形考点二:直角三
5、角形的性质例1、如图,AOB=40,OC平分AOB,直尺与OC垂直,则1等于()A60 B70 C50 D40【解析】如图所示:根据题意得:1=2=3,OC平分AOB,AOC=AOB=20,3=9020=70,1=70;故选:B例2、如图,在ABC中,ACB=90,B=40,D为线段AB的中点,则ACD=50【解析】如图,在ABC中,ACB=90,B=40,A=50D为线段AB的中点,CD=AD,ACD=A=50故答案是:50例3、如图,已知AOD=30,点C是射线OD上的一个动点在点C的运动过程中,AOC恰好是直角三角形,则此时A所有可能的度数为60或90【解析】在AOC中,AOC=30,A
6、OC恰好是直角三角形时,分两种情况:如果A是直角,那么A=90;如果ACO是直角,那么A=90AOC=60故答案为60或90例4、如图,在ABC中,CE,BF是两条高,若A=70,BCE=30,求EBF与FBC的度数【解析】在RtABF中,A=70,CE,BF是两条高,EBF=20,ECA=20,又BCE=30,ACB=50,在RtBCF中FBC=40考点三:含30度角的直角三角形例1、如图,ABC中,C=90,A=30,AB=12,则BC=()A6 B6 C6 D12【解析】C=90,A=30,AB=12,BC=AB=12=6,选A例2、如图,在ABC中,ACB=90,B=30,BC=6,C
7、D为AB边上的高,点P为射线CD上一动点,当点P运动到使ABP为等腰三角形时,BP的长度为4或6【解析】ACB=90,CDAB,ADAB,ACD=ABC=30,AC=BC=2,AD=AC=,当AP=AB=4时,PD=3,BD=BC=3,PB=6,当PB=AB=4,综上所述:PB=4或6故答案为:4或6例3、如图,BAC=30,AM是BAC的平分线,过M作MEBA交AC于E,作MDBA,垂足为D,ME=10cm,则MD=5cm【解析】过M作MFAC于F,AM是BAC的角平分线,MD=MF,BAM=CAM,MEBA,AME=BAM, CAM=AME=BAC=30=15, CEM是AME的外角,CE
8、M=CAM+AME=15+15=30, 在RtMEF中,FEM=30,MF=ME=10=5cm,MD=MF=5cm故答案为5cm考点四:直角三角形斜边上的中线例1、RtABC中,两直角边的长分别为6和8,则其斜边上的中线长为()A10 B3 C4 D5【解析】已知两直角边为6、8,则斜边长为=10,故斜边的中线长为10=5,故选D例2、如图,在RtABC中,BAC=90,AB=6,D是斜边BC的中点,若AD=5,则AC等于()A8 B64 C5 D6【解析】在RtBAC中,BAC=90,D为斜边BC的中点,AD=5,BC=2AD=10,由勾股定理得:AC=8,故选A例3、如图,CD是RtABC
9、斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于30度【解析】在RtABC中,CE是斜边AB的中线,AE=CE,A=ACE,CED是由CBD折叠而成,B=CED,CEB=A+ACE=2A,B=2A,A+B=90,A=30故答案为:30例4、如图,在RtABC中,BAC=90,AD是BC边上的中线,EDBC于D,交BA延长线于点E,若E=35,求BDA的度数【解析】EDBC,E=35,B=55 在RtABC中,BAC=90,AD是BC边上的中线,AD=BD BAD=B=55BDA=70P(Practice-Oriented)实战演练实战演练 课堂狙击1、下列条件中,能判定
10、两个直角三角形全等的是()A一锐角对应相等 B两锐角对应相等 C一条边对应相等 D两条直角边对应相等【解析】选:D2、如图,若要用“HL”证明RtABCRtABD,则还需补充条件()ABAC=BAD BAC=AD或BC=BDCAC=AD且BC=BD D以上都不正确【解析】从图中可知AB为RtABC和RtABD的斜边,也是公共边跟据“HL”定理,证明RtABCRtABD,还需补充一对直角边相等,即AC=AD或BC=BD,故选B3、如图,BD平分ABC,CDBD,D为垂足,C=55,则ABC的度数是()A35 B55 C60 D70【解析】CDBD,C=55,CBD=9055=35,BD平分ABC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 寒假 讲义 06 直角三角形 提高 教案
链接地址:https://www.77wenku.com/p-126829.html