中考数学一轮复习讲义第09讲-图形的初步认识与三角形(提高)-教案
《中考数学一轮复习讲义第09讲-图形的初步认识与三角形(提高)-教案》由会员分享,可在线阅读,更多相关《中考数学一轮复习讲义第09讲-图形的初步认识与三角形(提高)-教案(13页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第09讲-图形的初步认识与三角形 授课类型T同步课堂P实战演练S归纳总结教学目标 掌握两直线的位置关系,并能熟练作出点到直线的距离,理解垂线段最短; 掌握两直线平行的判定与性质; 掌握三角形的基本概念与性质,能熟练运用判定条件证明三角形全等; 熟练掌握等腰、等边三角形的性质与判定; 理解垂直平分线、角平分线的性质,并能熟练运用解决相关问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一) 图形的初步认识1. 基本概念(1)直线的基本性质:两
2、条直线相交,只有_交点经过两点有且只有一条直线.(2)线段的性质:所有连接两点的线中,线段最短,即:两点之间 _最短(3)线段的中点、直线、射线、线段的区别与联系(略)(4)角的概念、角的单位与换算(160,160,1周角2平角4直角)2. 两直线的位置关系(1)补角与余角:如果两个角的和等于_ _,就说这两个角互为余角;如果两个角的和等于_ ,就说这两个角互为补角同角(或等角)的余角相等 ;同角(或等角)的补角 (2)对顶角与邻补角:对顶角 ,邻补角 (3)垂线及其性质垂线:两条直线相交所构成的四个角中有一个角是_ ,则这两条直线互相垂直,其中一条直线叫做另一条直线的垂线性质:过一点有且只有
3、一条直线与已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短(简说成:垂线段最短)(4)点到直线的距离:直线外一点到这条直线的 的长度,叫做点到直线的距离(5)两直线垂直的判定:若两条直线相交且有一个角为直角,则这两条直线互相垂直3. 两直线平行的判定与性质(1)概念:在同一平面内,不相交的两条直线,叫做平行线(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行(3)性质:如果两条直线平行,那么同位角相等,内错角相等,同旁内角互补(4)判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;在同一平面内垂直于同一直线的两直线_,平行于同一直线的两
4、直线_(二) 三角形1. 基本概念(1)三角形:由三条线段_顺次相接组成的图形,叫做三角形 三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形(2)三角形的性质:三角形的内角和是_;三角形的一个外角等于与它不相邻的_;三角形的一个外角大于与它_的任何一个内角;三角形的任意两边之和_第三边;三角形任意两边之差_第三边(3)三角形中的重要线段:三角形的角平分线、三角形的高线、三角形的中线(平分面积)、三角形的中位线(三角形的中位线平行于第三边,且等于它的_)2. 三角形全等的判定与证明(1)概念:能够_的两个三角形叫做全等三角形(2)性质:全等三角形的_、_
5、分别相等(3)判定:SSS、 SAS、ASA、 AAS、HL(4)定义:对一个概念的特征、性质的描述叫做这个概念的定义(5)命题:判断一件事情的语句命题由_和_两部分组成命题通常写成“如果,那么”的形式,“如果”后面是题设,“那么”后面是结论正确的命题称为_;错误的命题称为_(6)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的_,而第一个命题的结论是第二个命题的_,那么这两个命题称为互逆命题每一个命题都有逆命题(7)定理:经过证明的真命题叫做定理因为定理的逆命题不一定都是真命题所以不是所有的定理都有逆定理(8)公理:有一类命题的正确性是人们在长期的实践中总结出来的,并把它们作为判断
6、其他命题真伪的原始依据,这样的真命题叫做公理(9)证明、反证法(略)(三) 等腰三角形1 等腰三角形的性质与判定(1)等腰三角形的有关概念及分类:有两边相等的三角形叫做等腰三角形,三边相等的三角形叫做等边三角形,也叫做正三角形;等腰三角形分为腰和底_的等腰三角形和_ 三角形(2)等腰三角形的性质:等腰三角形的两个底角相等(简称为“等边对等角”);等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);等腰三角形是轴对称图形(3)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”)(4)等边三角形的性质:等边三角形的内角相等,且
7、都等于_;(2)等边三角形的三条边都_(5)等边三角形的判定:_相等的三角形是等边三角形; _相等的三角形是等边三角形;有一个角为_的等腰三角形是等边三角形2 垂直平分线的性质与判定(1)概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫_(2)性质:线段垂直平分线上的点到这条线段两个端点的距离_(3)判定:到一条线段的两个端点_的点在线段的垂直平分线上,线段的垂直平分线可以看作是到线段两端点距离相等的点的集合3 角平分线的性质与判定(1)性质:角平分线上的点到角的两边的距离_(2)判定:角的内部到角的两边距离相等的点在角的_ 上,角的平分线可以看作是到角的两边距离相
8、等的点的集合考点一: 图形的初步认识例1、已知ABC中,BC=6,AC=3,CPAB,垂足为P,则CP的长可能是()A2 B4 C5 D7【解析】根据垂线段最短可知:PC3,CP的长可能是2,故选A例2、如图,直线mn,1=70,2=30,则A等于()A30 B35 C40 D50【解析】C例3、如图,直线a、b被直线c所截,下列条件能使ab的是() A1=6 B2=6 C1=3 D5=7【解析】B考点二:三角形 例1、如图,ABC中,A=46,C=74,BD平分ABC,交AC于点D,那么BDC的度数是()A76 B81 C92 D104【解析】BDC=A+ABD=76,故选A例2、如图,点D
9、,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定ABEACD()AB=C BAD=AE CBD=CE DBE=CD【解析】如添BE=CD,因为SSA,不能证明ABEACD,故选:D例3、四边形ABCD中,AD=BC,BE=DF,AEBD,CFBD,垂足分别为E、F(1)求证:ADECBF;(2)若AC与BD相交于点O,求证:AO=CO【解析】(1)RtADERtCBF(HL);(2)法一:证明AEORtCFO(AAS),从而得出结论;法二:RtADERtCBF,ADE=CBF,ADBC,四边形ABCD是平行四边形,AO=CO考点三: 等腰三角形例
10、1、一个等腰三角形的两边长分别为4,8,则它的周长为()A12 B16 C20 D16或20【解析】当4为腰时,4+4=8,故此种情况不存在;当8为腰时,8488+4,符合题意故选C例2、如图,在ABC中,AB=AC,A=30,E为BC延长线上一点,ABC与ACE的平分线相交于点D,则D的度数为()A15 B17.5 C20 D22.5【解析】A例3、如图,ABC中,AC=BC,点D在BC上,作ADF=B,DF交外角ACE的平分线CF于点F(1)求证:CFAB;(2)若CAD=20,求CFD的度数【解析】(1)ACF=ECF=,BAC=ACF,CFAB;(2)解:BAC=ACF,B=BAC,A
11、DF=B,ACF=ADF,ADF+CAD+AGD=180,ACF+F+CGF=180,又AGD=CGF,F=CAD=20考点四: 垂直平分线与角平分线例1、 如图所示,底边BC为2,顶角A为120的等腰ABC中,DE垂直平分AB于D,则ACE的周长为()A2+2 B2+ C4 D3【解析】ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A例2、如图,在ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则BAD的度数为()A65 B60 C55 D45【解析】A例3、如图,在RtABC中,C=90,以顶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 一轮 复习 讲义 09 图形 初步 认识 三角形 提高 教案
链接地址:https://www.77wenku.com/p-126833.html