初二数学寒假班讲义第02讲-实数与实数计算(提高)-学案
《初二数学寒假班讲义第02讲-实数与实数计算(提高)-学案》由会员分享,可在线阅读,更多相关《初二数学寒假班讲义第02讲-实数与实数计算(提高)-学案(12页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:八年级(上)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第02讲-实数与实数计算授课类型T同步课堂P实战演练S归纳总结教学目标了解实数的基本内容;掌握算术平方根、平方根、立方根、实数的概念及二次根式的相关概念;重点掌握无理数的相关概念及二次根式的混合运算。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、无理数(1)概念:无限不循环小数;(2)估算无理数的近似值“夹逼法”。2、平方根(1)算术平方根;(2)平方根:一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根;(3)开平方:被开方数为非负数。
2、3、立方根(1)正数的立方根是正数;0的立方根是0;负数的立方根是负数;(2)开立方:被开方数为任意实数。4、实数的分类(1)按定义分:分为有理数和无理数;(2)按符号性质分:分为正实数、0、负实数。5、实数的有关概念与性质(1)实数的绝对值、相反数、倒数(2)实数与数轴上的点一一对应6、实数的运算(1)实数的大小比较(2)实数的混合运算7、二次根式(1)概念:形如的式子叫二次根式;被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。(2)性质:,。(3)运算:加减法:先把各个二次根式化成最简二次根式,然后把被开方数相同的二次根式分别合并;混合运算:先算乘方,再算乘
3、除,后算加减,有括号的先算括号内的。考点一:无理数例1、下列实数中的无理数是()A0.7 B C D8例2、阅读下列材料:设=0.333,则10x=3.333,则由得:9x=3,即所以=0.333=根据上述提供的方法把下列两个数化成分数= ,= 例3、把下列各数分别填在相应的集合中:,0,、,0.,3.14例4、定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数如不能表示为两个互质的整数的商,所以,是无理数可以这样证明:设与b 是互质的两个整数,且b0则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2
4、n2,所以b也是偶数,与a,b是互质的正整数矛盾所以,是无理数仔细阅读上文,然后,请证明:是无理数考点二:平方根与立方根例1、(2)2的平方根是()A2 B2 C2 D例2、的值为()A3 B3 C2 D2例3、已知一个正数的平方根是2x和x6,这个数是 例4、下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是 (用含n的代数式表示)考点三:实数的有关概念与性质例1、实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A|a|b| Bab Cab D|a|b|例2、已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()Aab0 Ba+b0 C|a|b| Dab
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 寒假 讲义 02 实数 计算 提高
链接地址:https://www.77wenku.com/p-126846.html