初三数学寒假班第05讲-图形的相似(提高)-教案.doc
《初三数学寒假班第05讲-图形的相似(提高)-教案.doc》由会员分享,可在线阅读,更多相关《初三数学寒假班第05讲-图形的相似(提高)-教案.doc(14页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第05讲-图形的相似授课类型T同步课堂P实战演练S归纳总结教学目标 熟练利用成比例线段计算线段的长度; 掌握平行线分线段成比例的常见模型,并准确计算线段长度; 掌握判定三角形相似的三个条件,熟练进行相关证明; 熟练运用三角形相似解决测高等实际问题; 理解三角形相似的性质及图形的位似,并能进行简单计算。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)比例的性质 1.比例中项; 2.合分比性质; 3.等比性质(二)平行线分线段成比例定理 1.两
2、条直线被一组平行线所截,所得的线段成比例。2.如右图所示,所得的对应线段成比例的有:= ,等等。3.所得的线段必须是对应的,否则不成比例。4.平行线段分线段成比例定理的常见变形如下图所示: (三)平行线分线段成比例定理的推论 平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。 1.一定要注意三边的对应的关系,不要写错 2.平行于三角形的一边的直线可以与三角形的两边相交,也可以与三角形的两边的延长线相交,如下图所示,若DEBC,则有(四)相似三角的判定方法 1、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似 2、如果一个三角的两条边与另一个三角形的两条边
3、对应成比例,并且夹角相等,那么这两个三角形相似 3、如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似 (五)相似三角形基本类型 1、平行线型:常见的有如下两种,DEBC,则ADEABC 2、相交线型:常见的有如下四种情形 (1)如图,已知1=B,则由公共角A得,ADEABC (2)如下左图,已知1=B,则由公共角A得,ADCACB (3)如下右图,已知B=D,则由对顶角1=2得,ADEABC 3、旋转型:已知BAD=CAE,B=D,则ADEABC, 右图为常见的基本图形 4、母子型:已知ACB=90,ABCD,则CBDABCACD 5、斜交型: 如图:其中1=2
4、,则ADEABC称为“斜交型”的相似三角形。 (有“反A共角型”、“反A共角共边型”、 “蝶型”) 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”) (六)黄金分割(七)相似三角形的性质 1、相似三角形对应角相等,对应边成比例. 2、相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. 3、相似三角形周长的比等于相似比. 4、相似三角形面积的比等于相似比的平方.(八)利用三角形相似测量高度方法 1、利用阳光下的影子测量物高 根据太阳光线是平行的,寻找相似三角形. 在同一时刻, 2、利用标杆测量物高 3、利用镜子原理测量物高(九)图形的位似
5、1、位似图形的定义 2、图形位似的性质考点一:成比例线段与平行线分线段成比例例1、(1)已知=,求的值 (2)已知=,求的值【解析】(1)=, b=a,则=;(2)设=a,则x=2a,y=3a,z=4a,=例2、如图,在ABC中,D为AB上的一点,过点D作DEBC交AC于点E,过点D作DFAC交BC 于点F,则下列结论错误的是()A= B= C= D=【解析】C考点二:三角形相似的条件例1、如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD则图中相似三角形的对数是()A1 B2 C3 D4【解析】有三对相似三角形,RtABERtDEF,RtABERtEBF,RtEBFRt
6、DEF理由如下:设正方形的边长为4a,则AE=DE=2a,DF=a,CF=3a,在RtBCF中,BF=5a, 在RtABE中,BE=2a,在RtDEF中,EF=a, BE2+EF2=BF2,BEF为直角三角形,BEF=90,=2,=2, =, RtABERtDEF,同理得=,RtABERtEBF, RtEBFRtDEF 故选:C例2、在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0t6),那么当t为何值时,APQ与ABD相似?说明理由【解析】设A
7、P=2tcm,DQ=tcm,AB=12cm,AD=6cm,AQ=(6t)cm,A=A, 当 =时,APQABD,=,解得:t=3;当 =时,APQADB,=,解得:t=1.2当t=3或1.2时,APQ与ABD相似考点三: 利用三角形相似测高例1、如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A3.25m B4.25m C4.45m D4.75m【解析】如
8、图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,BD=0.96,树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,x=4.45,树高是4.45m故选C例2、如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度【解析】由题意可得:DEFDCA,则=,DE=0.5
9、米,EF=0.25米,DG=1.5m,DC=20m,=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m考点四:相似三角形的性质与位似 例1、如果两个相似三角形的相似比是2:3,较小三角形的面积为4cm2,那么较大三角形的面积9 cm2【解析】9 cm2例2、有一块直角边AB=3cm,BC=4cm的RtABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A B C D【解析】如图,过点B作BPAC,垂足为P,BP交DE于QSABC=ABBC=ACBP,BP=DEAC,BDE=A,BED=C,BDEBAC,设DE=x,
10、则有:,解得x=,故选:D例3、如图,在平面直角坐标系中,已知点A(3,6),B(9,3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(1,2) B(9,18)C(9,18)或(9,18) D(1,2)或(1,2)【解析】A(3,6),B(9,3),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标为(3,6)或3(),6(),即A点的坐标为(1,2)或(1,2)故选DP(Practice-Oriented)实战演练实战演练 课堂狙击1、已知,则的值是()A B C D【解析】D2、如图所示,ABC中若DEBC,EFAB,则下列比例式正确的是()A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 寒假 05 图形 相似 提高 教案
链接地址:https://www.77wenku.com/p-126895.html