初三数学寒假班讲义第01讲-二次函数(提高)-教案
《初三数学寒假班讲义第01讲-二次函数(提高)-教案》由会员分享,可在线阅读,更多相关《初三数学寒假班讲义第01讲-二次函数(提高)-教案(16页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数项可以同时为零; x的取值范
2、围是全体实数(二) 二次函数的图像与性质1、二次函数图像的基本性质二次函数yax2bxc(a,b,c为常数,a0)图象(a0)(a0)开口方向开口向上开口向下对称轴直线x直线x顶点坐标增减性当x时,y随x的增大而减小;当x时,y随x的增大而增大当x时,y随x的增大而增大;当x时,y随x的增大而减小最值当x时,y有最小值当x时,y有最大值2、二次函数图像的平移 方法一: 总结:在原有函数的基础上“值正右移,负左移;值正上移,负下移” 方法二:沿轴平移:向上(下)平移个单位,变成(或)沿轴平移:向左(右)平移个单位,变成(或)总结:概括成八个字“左加右减,上加下减” 3、二次函数的图象与各项系数之
3、间的关系 (1) 二次项系数的正负决定开口方向,的大小决定开口的大小(2)一次项系数:在确定的前提下,决定了抛物线对称轴的位置, “左同右异”。 (3) 常数项:决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的(三) 二次函数的表达式1、一般式:(,为常数,);2、顶点式:(,为常数,);3、两根式:(,是抛物线与轴两交点的横坐标).使用条件:1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式(四) 二次函数的应用解题
4、一般方法步骤(先构造二次函数模型):(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围(2)在自变量取值范围内,运用公式法或配方法或对称轴判定法,求出二次函数的最大值或最小值(五) 二次函数与一元二次方程(1)二次函数yax2bxc(a0),当y0时,就变成了ax2bxc0(a0)(2)ax2bxc0(a0)的解是抛物线与x轴交点的横坐标(3)当0时,有两个不同的交点;当0时,有一个交点;当0时,抛物线与x轴没有交点考点一: 二次函数的定义例1、若y=(1+m)是二次函数,且开口向下,则m的值为()A3 B3 C+3 D0【解析】B例2、下列函数关系中,可以看
5、做二次函数y=ax2+bx+c模型的是()A在一定距离内,汽车行驶的速度与行驶的时间的关系B我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D圆的周长与半径之间的关系【解析】C考点二: 二次函数的图像与性质例1、一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()A B C D【解析】C例2、如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(1,0),与y轴的交点B在(0,2)和(0,1)之间(不包括这两点),对称轴为直线x=1下列结
6、论:abc0; 4a+2b+c0 ;4acb28a ;a;bc其中含所有正确结论的选项是()A B C D【解析】函数开口方向向上,a0;对称轴在y轴右侧ab异号,抛物线与y轴交点在y轴负半轴,c0,abc0,故正确;图象与x轴交于点A(1,0),对称轴为直线x=1,图象与x轴的另一个交点为(3,0),当x=2时,y0,4a+2b+c0,故错误;图象与x轴交于点A(1,0),当x=1时,y=(1)2a+b(1)+c=0,ab+c=0,即a=bc,c=ba,对称轴为直线x=1=1,即b=2a,c=ba=(2a)a=3a,4acb2=4a(3a)(2a)2=16a208a04acb28a故正确图象
7、与y轴的交点B在(0,2)和(0,1)之间,2c123a1,a;故正确a0,bc0,即bc;故正确;故选:D例3、将抛物线y=2(x+1)22向右平移2个单位,再向上平移2个单位所得新抛物线的表达式()Ay=2(x+3)2 By=(x+3)2 Cy=(x1)2 Dy=2(x1)2【解析】D考点三: 二次函数的表达式例1、把二次函数y=x2x+3配方化为y=a(xh)2+k形式()Ay=(x2)2+2 By=(x2)2+4 Cy=(x+2)2+4 Dy=(x1)2+3【解析】C例2、如图,二次函数y=x2+bx+c的图象过点B(0,2)它与反比例函数y=的图象交于点A(m,4),则这个二次函数的
8、解析式为()Ay=x2x2 By=x2x+2 Cy=x2+x2 Dy=x2+x+2【解析】A考点四: 二次函数的应用例1、便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=2(x20)2+1558,由于某种原因,价格只能15x22,那么一周可获得最大利润是()A20 B1508 C1550 D1558【解析】当x=20时,y最大值=1558故选D例2、如图,正六边形的边长为10,分别以正六边形的顶点A、B、C、D、E、F为圆心,画6个全等的圆若圆的半径为x,且0x5,阴影部分的面积为y,反映y与x之间函数关系的大致图形是()A BC D【解析】正六边
9、形的内角和=(62)180=720,y=2x2当x=5时,y=225=50故选:D例3、某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【解析】(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,该函数的表达式为y=0.
10、5x+80,(2)根据题意,得,(0.5x+80)(80+x)=6750,解得,x1=10,x2=70投入成本最低x2=70不满足题意,舍去增种果树10棵时,果园可以收获果实6750千克(3)根据题意,得w=(0.5x+80)(80+x)=0.5 x2+40 x+6400 =0.5(x40)2+7200a=0.50,则抛物线开口向下,函数有最大值当x=40时,w最大值为7200千克当增种果树40棵时果园的最大产量是7200千克考点五:二次函数与一元二次方程例1、若二次函数y=ax2+bx+c(a0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是()A
11、0k4 B3k1 Ck3或k1 Dk4【解析】由图象可知,抛物线的对称轴为x=1,顶点坐标为(1,4),设抛物线的解析式为:y=a(x+1)2+4,把(1,0)代入解析式得,a=1,解析式为:y=x22x+3,方程=x22x+3=k有两个不相等的实根,=4+124k0,解得:k4故选:D例2、如图,一段抛物线y=x(x3)(0x3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180得到C2,交x轴于A2;将C2绕A2旋转180得到C3,交x轴于A3,如此进行下去,得到一条“波浪线”若点P(41,m)在此“波浪线”上,则m的值为()A2 B2 C0 D【解析】当y=0时,x(x3)=0,
12、解得x1=0,x2=3,则A1(3,0),OA1=3,C1绕A1旋转180得到C2,A1A2=OA1=3,则OA2=6,A2(6,0),C2的解析式为y=(x3)(x6)(3x6),同样可得OA13=39,OA14=42,则A13(39,0),A14(42,0),C14的解析式为y=(x39)(x42)(39x42),点P(41,m)在抛物线C14上,当x=41时,m=2(1)=2故选BP(Practice-Oriented)实战演练实战演练 课堂狙击1、若y=(a2+a)是二次函数,那么()Aa=1或a=3 Ba1或a0 Ca=3 Da=1【解析】C2、下列函数关系中,是二次函数的是()A在
13、弹性限度内,弹簧的长度y与所挂物体的质量x之间的关系B当距离一定时,汽车行驶的时间t与速度v之间的关系C矩形的面积S和矩形的宽x之间的关系D等边三角形的面积S与边长x之间的关系【解析】D3、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x32101y323611则该函数图象的对称轴是()A直线x=3 B直线x=2 C直线x=1 D直线x=0【解析】B4、如图是抛物线y=ax2+bx+c(a0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间则下列结论:ab+c0;3a+b=0;b2=4a(cn);一元二次方程ax2+bx+c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 寒假 讲义 01 二次 函数 提高 教案
链接地址:https://www.77wenku.com/p-126916.html