高考数学函数专题训练《三次函数》含答案解析
《高考数学函数专题训练《三次函数》含答案解析》由会员分享,可在线阅读,更多相关《高考数学函数专题训练《三次函数》含答案解析(11页珍藏版)》请在七七文库上搜索。
1、高考数学函数专题训练 三次函数一、选择题1函数在区间上的最大值、最小值分别为、,则( )A2B4C20D18【答案】C【解析】对函数进行求导得到:,令,解得:,当时,;当时,所以函数在上单调递减,函数在上单调递增,由于,所以最大值,最小值,故,故答案选C2.函数的图像如图所示,则下列结论成立的是( ).A BC D【答案】A【解析】令,可得.又,由函数图像的单调性,可知.由图可知,是的两根,且,.所以,得.故选A.3若函数在上存在极小值点,则实数的取值范围是( )A &n
2、bsp;B C D【答案】B【解析】当时, 在上存在极小值,则当时,即时, 当时, 无极小值.综上可知实数的取值范围是4设函数,若,则的取值范围是ABCD【答案】A【解析】令,其中,取可得 取可得 取可得 由可得:, 将代入可得:故选A5函数在内既有极大值又有极小值,则的取值范围是( )A B C D【答案】D【解析】因为函数在内既有极大值又有极小值,所以导函数在内有两个不同的零点,所以因此因为又因为所以故选D.6 已知是R上的单调增函数,则的取值范围
3、是 ( ) A. B. C. D. 【答案】D【解析】恒成立,所以,故选D.7.若存在唯一的正整数,使关于的不等式成立,则实数的取值范围是 ( )ABCD【答案】B【解析】设,则存在唯一的正整数,使得,设,因为,所以当以及时,为增函数,当时,为减函数,在处,取得极大值,在处,取得极大值.而恒过定点,两个函数图像如图,要使得存在唯一的正整数,使得,只要满足,即,解得,故选.8当时,不等式恒成立,则实数的范围( )ABCD【答案】B【解析】当时,不等式恒成立,当时,不等式恒成立可转化为:则
4、记,则恒成立,所以当时,所以当时,不等式恒成立可转化为:则,当时,所以,综上所述:,故选B.9已知函数,当时,曲线在点与点处的切线总是平行时,则由点可作曲线的切线的条数为( )A B C D无法确定【答案】C【解析】由,得,曲线在点与点处的切线总是平行,关于对称,即,点,即为,所以,设切点为切线的方程为,将点代入切线方程可得,化为,设令得或,令得,在上递增,在上递减,在处有极大值,在处有极小值,且,与有三个交点,方程有三个根,即过的切线有条,故答案为.10已知函数,曲线关于直线对称,现给出如结论:若,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020数学高考函数专题训练含答案解析 2020年高考数学函数专题训练含答案解析
链接地址:https://www.77wenku.com/p-127331.html