著名机构高二数学理科秋季班讲义第15讲 期末复习 教师版
《著名机构高二数学理科秋季班讲义第15讲 期末复习 教师版》由会员分享,可在线阅读,更多相关《著名机构高二数学理科秋季班讲义第15讲 期末复习 教师版(17页珍藏版)》请在七七文库上搜索。
1、期末复习第15讲 15.1圆锥曲线椭圆的定义:到两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,两定点称为椭圆的焦点椭圆的标准方程:椭圆的几何性质:范围:;对称性:关于轴,轴成轴对称,关于原点(椭圆的中心)成中心对称;顶点:,;长轴:线段;短轴:线段;离心率:,越大,椭圆越扁;圆锥曲线双曲线双曲线的定义:平面内到两个定点的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,两定点称为双曲线的焦点双曲线的标准方程:()双曲线的几何性质:范围:或;对称性:关于轴,轴成轴对称,关于原点(双曲线的中心)成中心对称;顶点:;实轴:线段;虚轴:线段();离心率:,越大,双曲线开口越开阔;渐近线方程
2、:;抛物线的定义:平面内到一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,称为抛物线的焦点,称为抛物线的准线抛物线的标准方程:(,);抛物线的几何性质:范围:,向右上方和右下方无限延伸;对称性:关于轴(抛物线的轴)对称;顶点:原点(抛物线与轴的交点);椭圆抛物线知识点睛经典精讲【例1】 (北京市十一学校选修2-1理科数学期末测试6)已知椭圆的焦点为和,是椭圆上的一点,且是与的等差中项,则该椭圆的方程为( )A B C D 若抛物线的焦点与椭圆的右焦点重合,则的值为( )A B C D 双曲线的离心率为,则椭圆的离心率为( )A B C D ,为椭圆的两个焦点,点在椭圆上,且,则的面积是(
3、)A B C D 若点的坐标为,是抛物线的焦点,点在抛物线上移动时,使取得最小值的的坐标为( )A B C D【解析】 C是与的等差中项,即,椭圆的方程为 D椭圆的右焦点为,所以抛物线的焦点为,则 C双曲线的离心率为,椭圆的离心率为 A D如图,根据抛物线的定义,要使取得最小值,即取得最小值,当三点共线时,取得最小值,点的纵坐标为,代入抛物线方程得横坐标为,点的坐标为【备选】 椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为( )A B C D【解析】 A由已知有,【例2】 过双曲线的右焦点作倾斜角为的直线交双曲线于、两点,求线段的中点到焦点的距离 定长为的线段的端点、在抛
4、物线上移动,求的中点到轴的距离的最小值,并求出此时中点的坐标【解析】 由已知,的方程为,将其代入得,设,则的中点的坐标为,于是 分析:线段中点到轴距离的最小值,就是其横坐标的最小值这是中点坐标问题,因此只要研究、两点的横坐标之和的最小值即可如图,设是的焦点,、两点到准线的垂线分别是、,又到准线的垂线为,、和是垂足,则设,则,则,等式成立的条件是过点,易知当垂直于轴时,等号不成立,于是可设的方程为,代入抛物线的方程得:,要使等号成立,必有,解得于是,的中点到轴的距离有最小值为,此时中点的坐标为【例3】 设、分别是椭圆的左、右焦点 若是该椭圆上的一个动点,求的最大值和最小值; 设过定点的直线与椭圆
5、交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围【解析】 解法一:易知,所以,设,则 ,因为,故当,即点为椭圆短轴端点时,有最小值;当,即点为椭圆长轴端点时,有最大值1解法二:易知,所以,设,则 因为,故当,即点为椭圆短轴端点时,有最小值;当,即点为椭圆长轴端点时,有最大值1 显然直线不满足题设条件,可设直线,联立,消去,整理得,由,得或 又又 ,即, 故由得或提高班学案1【拓1】 已知点,(是大于0的常数),动点满足 求点的轨迹的方程; 点是轨迹上一点,过点的直线交轴于点,交轴于点,若,求直线的斜率【解析】 设,则,则点的轨迹的方程为 设,直线,则点当时,由于,得 又点在
6、椭圆上,所以,解得故直线的斜率是尖子班学案1【拓2】 已知椭圆的离心率为,短轴一个端点到右焦点的距离为 求椭圆的方程; 设直线与椭圆交于、两点,坐标原点到直线的距离为,求面积的最大值【解析】 设椭圆的半焦距为,依题意:,所求椭圆方程为 设,当轴时,时,;当与轴不垂直时,设直线的方程为由已知,得,把代入椭圆方程,整理得, 当且仅当即时等号成立当时,综上所述当最大时,面积取最大值,目标班学案1【拓3】 设椭圆的焦点分别为、,直线交轴于点,且,如图 试求椭圆的方程; 过、分别作互相垂直的两直线与椭圆分别交于、四点(如图),试求四边形面积的最大值和最小值【解析】 由题意,为的中点,即:椭圆方程为 当直
7、线与轴垂直时,此时,四边形的面积为同理当与轴垂直时,也有四边形的面积为当直线,均与轴不垂直,设直线,代入椭圆方程,消去得设,则所以,所以,同理:所以,四边形的面积,令,得因为,当时,且是以为自变量的增函数,所以综上可知,四边形面积的最大值为4,最小值为【例4】 设,两点在抛物线上,是的垂直平分线 当且仅当取何值时,直线经过抛物线的焦点?证明你的结论; 当直线的斜率为2时,求在轴上截距的取值范围【解析】 、两点到抛物线的准线的距离相等,抛物线的准线是轴的平行线,依题意,不同时为0,上述条件等价于;,上述条件等价于即当且仅当时,经过抛物线的焦点 设在轴上的截距为,依题意得的方程为;过点、的直线方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 著名机构高二数学理科秋季班讲义第15讲 期末复习 教师版 著名 机构 数学 理科 秋季 讲义 15 期末 复习
链接地址:https://www.77wenku.com/p-127456.html