北师大版初一(上)数学第6讲:相反数和绝对值(学生版)(著名机构讲义)
《北师大版初一(上)数学第6讲:相反数和绝对值(学生版)(著名机构讲义)》由会员分享,可在线阅读,更多相关《北师大版初一(上)数学第6讲:相反数和绝对值(学生版)(著名机构讲义)(7页珍藏版)》请在七七文库上搜索。
1、相反数和绝对值_1、掌握相反数的定义。2、掌握绝对值的本质意义。3、掌握相关典型题的解法。1、相反数定义只有符号不同的两个数叫做互为_,其中一个是另一个的相反数,0的相反数是_。注意:相反数是_出现的;相反数只有符号不同,若一个为正,则另一个为负;0的相反数是它本身,相反数为本身的数是0。2、相反数的性质与判定任何数都有_,且只有一个;0的相反数是0;互为相反数的两数和为_,和为0的两数互为_。3、相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:
2、在数轴上,表示互为相反数的两个点关于_对称。4、相反数的求法求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5、相反数的表示方法一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。当a0时,-a0(正数的相反数是负数)当a0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6、多重符号的化简多重符号的化简规
3、律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。7、绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的_,记作|a|。8、绝对值的代数定义一个正数的绝对值是它_;一个负数的绝对值是它的_;0的绝对值是_。可用字母表示为:如果a0,那么|a|=_;如果a0,那么|a|=_;如果a=0,那么|a|=_。可归纳为:a0,|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)a0|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)9、绝对值的性质任何一个
4、有理数的绝对值都是非负数,也就是说绝对值具有_。所以,a取任何有理数,都有|a|_0。即(1)0的绝对值是0;绝对值是0的数是0,即:a=0 |a|=0;一个数的绝对值是非负数,绝对值最小的数是_.即:|a|0;任何数的绝对值都_原数。即:|a|a;绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a0),则x=a;互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;绝对值相等的两数_或互为_。即:|a|=|b|,则a=b或a=-b;若几个数的绝对值的和等于0,则这几个数就_。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的
5、和为0,则有且只有这几个非负数同时为0)10、有理数大小的比较利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。11、绝对值的化简当a0时,|a|=a;当a0时,|a|=-a12、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。1、相反数【例1】3的相反数是()A.3 B.3 C.3 D.练1、(2015人大附期中)x+yz的相反数是()Ax+y+z
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 初一 数学 相反数 绝对值 学生 著名 机构 讲义
链接地址:https://www.77wenku.com/p-127830.html