著名机构初中数学培优讲义中考复习.解直角三角形.第11讲(通用讲).学生版
《著名机构初中数学培优讲义中考复习.解直角三角形.第11讲(通用讲).学生版》由会员分享,可在线阅读,更多相关《著名机构初中数学培优讲义中考复习.解直角三角形.第11讲(通用讲).学生版(14页珍藏版)》请在七七文库上搜索。
1、 内容 基本要求 略高要求 较高要求 勾股定理及逆定勾股定理及逆定 理理 已知直角三角形两边长,求第三 条边 会用勾股定理解决简单问题;会 用勾股定理的逆定理判定三角形 是否为直角三角形 会运用勾股定理解 决有关的实际问 题。 解直角三角形解直角三角形 知道解直角三角形的含义 会解直角三角形;能根据问题的 需要添加辅助线构造直角三角 形;会解由两个特殊直角三角形 构成的组合图形的问题 能综合运用直角三 角形的性质解决有 关问题 锐角三角函数锐角三角函数 了解锐角三角函数(正弦、余弦、 正切、余切),知道特殊角的三 角函数值 由某个角的一个三角函数值,会 求这个角其余两个三角函数值; 会求含有特
2、殊角的三角函数值的 计算 能用三角函数解决 与直角三角形有关 的简单问题 模块一、勾股定理 1勾股定理的内容:如果直角三角形的两直角边分别是 a、b,斜边为 c,那么 a2b2c2即直角三 角形中两直角边的平方和等于斜边的平方。 注:勾最短的边、股较长的直角边、 弦斜边。 C A B 图2 c b a 2勾股定理的证明: (1)方法一:将四个全等的直角三角形拼成如图所示的正方形: 知识点睛 中考要求 解直角三角形 2 2 222 1 4 2 . ABCD Sabcab abc 正方形 D CB A (2)方法二:将四个全等的直角三角形拼成如图所示的正方形: 2 2 222 1 4 2 . Sc
3、abab abc 正方形EFGH G F E H (3)方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形: 2 ()()11 2 222 ABCD ab ab Sabc 梯形 222. abc c b a c b a E D C BA 3勾股定理的逆定理: 如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即 222 ,ABCACBCABABC在中 如果那么是直角三角形。 4勾股数: 满足 a2 +b2=c2的三个正整数,称为勾股数勾股数扩大相同倍数后,仍为勾股数常用勾股数:3、4、 5; 5、12、13;7、24、25;8、15、17。 模块二、解直角三角形 一、
4、解直角三角形的概念 根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形 二、直角三角形的边角关系 如图,直角三角形的边角关系可以从以下几个方面加以归纳: c b a CB A (1)三边之间的关系: 222 abc (勾股定理) (2)锐角之间的关系:90AB (3)边角之间的关系:sincos,cossin,tan aba ABABA ccb 三、 解直角三角形的四种基本类型 (1) 已知斜边和一直角边(如斜边c, 直角边a), 由s i n a A c 求出 A, 则90BA, 22 bca ; (2)已知斜边和一锐角(如斜边c,锐角A),求出90BA,sin
5、acA,cosbcA; (3)已知一直角边和一锐角(如a和锐角A),求出90BA,tanbaB, sin a c A ; (4)已知两直角边(如a和b),求出 22 cab ,由tan a A b ,得90BA 具体解题时要善于选用公式及其变式,如sin a A c 可写成sinacA, sin a c A 等 四、解直角三角形的方法 解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取 原避中”这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切; 当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数
6、据又可用中间数据求得时, 则用原始数据,尽量避免用中间数据 五、解直角三角形的技巧及注意点 在Rt ABC中,90AB ,故sin cos(90)cosAAB ,cossinAB利用这些关系式,可在 解题时进行等量代换,以方便解题 六、如何解直角三角形的非基本类型的题型 对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来 转化为四种基本类型求解; (1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析; (2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:作垂 线构成直角三角形;利用图形本身的性质,如等腰三角形顶
7、角平分线垂直于底边等 七、直角三角形中其他重要概念 (1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫 做俯角如图 (2)坡角与坡度:坡面的垂直高度h和水平宽度l的比叫做坡度(或叫做坡比) ,用字母表示为 h i l , 坡面与水平面的夹角记作,叫做坡角,则tan h i l 坡度越大,坡面就越陡如图 (3)方向角(或方位角) :方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向 旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)度如图 图(3) 北 i=h:l 图(2) l h 图(1) 俯角 仰角 视线 视线 水平线
8、铅 垂 线 八、解直角三角形应用题的解题步骤及应注意的问题: (1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距 离、垂直距离等概念的意义; (2)找出要求解的直角三角形有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分 割成一些直角三角形和矩形(包括正方形); (3)根据已知条件,选择合适的边角关系式解直角三角形; (4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近 似值,注明单位 模块三、三角函数 一、 锐角三角函数的定义 如图所示,在RtABC中,a、b、c 分别为A、B、C的对边 c b a C B A
9、 (1)正弦:Rt ABC中,锐角A的对边与斜边的比叫做A的正弦,记作sin A,即sin a A c (2)余弦:Rt ABC中,锐角A的邻边与斜边的比叫做A的余弦,记作cos A,即cos b A c (3)正切:Rt ABC中,锐角A的对边与邻边的比叫做A的正切,记作tan A,即tan a A b 注意:注意: 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义 sin A、cos A、tan A分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin与A、 cos与A、tan与A的乘积 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、
10、邻边与斜边、对边与邻边的 比值,当这个锐角确定后,这些比值都是固定值 二、 特殊角三角函数 三、锐角三角函数的取值范围 在Rt ABC中,90C,000abcacbc,又sin a A c ,cos b A c ,tan a A b ,所 以 0sin10cos1tan0AAA, 四、三角函数关系 1同角三角函数关系: 22 sincos1AA, sin tan cos A A A 2互余角三角函数关系: (1) 任意锐角的正弦值等于它的余角的余弦值:sincos 90AA; (2) 任意锐角的余弦值等于它的余角的正弦值:cossin 90AA; (3) 任意锐角的正切值等于它的余角的余切值:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 著名 机构 初中 数学 讲义 中考 复习 直角三角形 11 通用
链接地址:https://www.77wenku.com/p-128662.html