2020高考数学(理)专项复习《坐标系与参数方程》含答案解析
《2020高考数学(理)专项复习《坐标系与参数方程》含答案解析》由会员分享,可在线阅读,更多相关《2020高考数学(理)专项复习《坐标系与参数方程》含答案解析(7页珍藏版)》请在七七文库上搜索。
1、坐标系与参数方程坐标系与参数方程 本专题涉及极坐标系的基础知识,参数方程的概念以及直线、圆、椭圆的参数方程这 部分内容既是解析几何的延续,也是高等数学的基础 【知识要点】【知识要点】 1极坐标系的概念,极坐标系中点的表示 在平面内取一个定点O,O点出发的一条射线Ox, 一个长度单位及计算角度的正方向(通 常取逆时针方向),合称为一个极坐标系O称为极点,Ox称为极轴 设M是平面内任意一点,极点O与点M的距离OM|叫做点M的极径,记作;以极轴 Ox为始边,射线OM为终边的角xOM叫做点M的极角,记作,有序数对(,)叫做点M 的极坐标一般情况下,约定0 2极坐标系与直角坐标系的互化 直角坐标化极坐标
2、:xcos,ysin; 极坐标化直角坐标: 222 yx ,).0(tan x x y 3参数方程的概念 设在平面上取定一个直角坐标系xOy, 把坐标x,y表示为第三个变量t的函数 )( )( tgy tfx bta,如果对于t的每一个值(atb),式所确定的点M(x,y)都在一条曲 线上;而这条曲线上任意一点M(x,y),都可由t的某个值通过式得到,则称式为该曲 线的参数方程,其中t称为参数 4参数方程与普通方程的互化 把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法常见的消参方 法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等 把曲线C的普通方程F(x,y)0
3、化为参数方程的关键:一是适当选取参数;二是确保 互化前后方程的等价性 要注意方程中的参数的变化范围 5直线、圆、椭圆的参数方程 (1)经过一定点P0(x0,y0),倾斜角为的直线l的参数方程为 sin ,cos 0 0 tyy txx (t为参 数); (2)直线参数方程的一般形式为 btyy atxx 0 0 , (t为参数); (3)圆的参数方程为 sin ,cos 0 0 ryy rxx (为参数); (4)椭圆)0( 1 2 2 2 2 ba b y a x 的参数方程为 sin ,cos by ax (为参数) 【复【复习要习要求】求】 1理解坐标系的作用 2能在极坐标系中用极坐标表
4、示点的位置,理解在极坐标系和平面直角坐标系中表示 点的位置的区别,能进行极坐标和直角坐标的互化 3了解参数方程 4能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用 【例题分析】【例题分析】 例例 1 1 (1)判断点) 3 5 , 2 3 (是否在曲线 2 cos上 (2)点P的直角坐标为)3, 1 ( ,则点P的极坐标为_(限定 02) (3)点P的极坐标为) 4 , 3( ,则点P的直角坐标为_ 解:解:(1)因为 2 3 6 5 cos 2 cos ,所以点) 3 5 , 2 3 (是在曲线 2 cos上 (2)根据 2x2y2, )0(tan x x y , 得2,3t
5、an,又点P在第四象限,2 2 3 ,所以 3 5 , 所以点P的极坐标为). 3 5 , 2( (3)根据xcos,ysin,得 2 23 , 2 23 yx, 所以点P的直角坐标为). 2 23 , 2 23 ( 例例 2 2 (1)圆2(cossin)的半径为_ (2)直线)( 3 R与圆2sin交与A,B两点,则|AB|_ 解:解:(1)由2(cossin),得 22(cossin), 所以,x 2y22x2y,即(x1)2(y1)22, 所以圆2(cossin)的半径为2 (2)将直线)( 3 R与圆2sin化为直角坐标方程,得 由 3 得 x y 3 tan,即xy3, 由2sin
6、,变形为 22sin,得 x 2y22y,即 x 2(y1)21, 因为圆的半径为 1,圆心到直线的距离为 2 1 31 1 d, 所以. 3) 2 1 (12| 2 AB 评述:评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题; (2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定的大小,如例 1(2),否 则,极坐标不唯一; (3)例 2 也可以用极坐标有关知识直接解决这需要知道一些直线与圆的极坐标方程的 知识如: 过极点,倾斜角为的直线:(R R)或写成及 过A(a,)垂直于极轴的直线:cosacos 以极点O为圆心,a为半径的圆(a0):a 若O(0,0),A(
7、2a,0),以OA为直径的圆:2acos 若O(0,0),A(2a, 2 ),以OA为直径的圆:2asin 对于例 2(2),可以利用结论,作出直线与圆,通过解三角形的方法求|AB,当然 也可以用极坐标方程直接解,根据的几何意义求AB 例例 3 3 圆O1和圆O2的极坐标方程分别为4cos,4sin (1)把圆O1和圆O2的极坐标方程化为直角坐标方程; (2)求经过圆O1和圆O2交点的直线的直角坐标方程 解:解:(1)由4cos得 24cos,根据 xcos,ysin,所以x 2y24x 即x 2y24x0 为圆 O1的直角坐标方程, 同理x 2y24y0 为圆 O2的直角坐标方程 (2)由
8、, 04 , 04 22 22 yyx xyx 解得 ; 0 , 0 1 1 y x . 2 , 2 2 2 y x 即圆O1和圆O2交于点(0,0)和(2,2)过交点的直线的直角坐标方程为yx 例例 4 4 (1)曲线的参数方程是 2 1 , 1 1 ty t x (t为参数,t0),它的普通方程是_ (2)在平面直角坐标系xOy中,直线l的参数方程为 ty tx 3 , 3 (参数tR R),圆C的参 数方程为 2sin2 ,cos2 y x (参数0,2),则圆C的圆心坐标为_,圆心到直线l的 距离为_ 解:解:(1)由 t x 1 1得 x t 1 1 ,带入y1t 2,得 , ) 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020高考数学(理)专项复习及答案解析 2020数学(理)高考专项复习及答案解析
链接地址:https://www.77wenku.com/p-128989.html