著名机构数学讲义寒假04-八年级培优版-整式方程与分式方程-教师版
《著名机构数学讲义寒假04-八年级培优版-整式方程与分式方程-教师版》由会员分享,可在线阅读,更多相关《著名机构数学讲义寒假04-八年级培优版-整式方程与分式方程-教师版(9页珍藏版)》请在七七文库上搜索。
1、教师姓名 冯娜娜 学生姓名 年 级 初二 上课时间 单击此处输 入日期。 学 科 数学 课题名称 整式方程与分式方程 院彭高钢院彭高钢知知识模块:整式方程识模块:整式方程 (一)代数方程(一)代数方程 整式方程与分式方程 代数方程 无理方程 分式方程 高次方程 二次方程 一次方程 整式方程 有理方程 (1)如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程; (2)一元整式方程中含未知数的项的最高次数是n(n是正整数),这个方程叫做一元n次方程;其中次 数n大于 2 的方程统称为一元高次方程,简称高次方程. (二)(二)二项方程二项方程 (1)二项方程:如果一元 n
2、次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这 样的方程就叫做二项方程. 一般形式: 关于 x 的一元 n 次二项方程的一般形式为 是正整数)nbabaxn, 0, 0(0 注 n ax =0(a0)是非常特殊的 n 次方程,它的根是 0. 这里所涉及的二项方程的次数不超过 6 次. (2)二项方程的解法: 将方程0bax n 变形为 n b x a .当 n 为奇数时,方程有且只有一个实数根,当 n 为偶数时,如 果 ab0,那么方程没有实数根。 (三)(三)特殊的高次方程特殊的高次方程 (1) 双二次方程:只含有偶数次项的一元四次方程.一般形式:)0(0 24 acbxa
3、x 注 : 当常数项不是 0 时,规定它的次数为 0. (2)解双二次方程的基本思想:解高次方程的基本思想是降次,使其转化为一元一次方程或者一元二 次方程,降次通常采用换元法或因式分解法。 (3)解双二次方程的一般过程: 换元,设 2 xy,则原方程变为关于 y 的一元二次方程 2 0(a0)aybyc 运用公式法、因式分解等方法解一元二次方程 回代 【例 1】下面四个方程中是整式方程的是( ) A 2 1 2xx x B 33 xxx C 10099 1xxx D 7 1 10x x 【答案】C 【例 2】方程 42 2100xx; 62 20xx; 3 10xx ; 4 2x 是双二次方程
4、的有 ( ) A B C D 【答案】D 【例 3】用适当的方法解下列方程 (1) 2 28x (2) 2 2410xx (3) 2 699910xx (4) 2 12115xx 【答案】(1)开平方法: 12 2 22,2 22xx; (2)公式法: 12 2626 , 22 xx (3)配方法: 12 103,97xx ; (4)因式分解法: 12 6,2xx 知知识模块:分式方程识模块:分式方程 (一)分式方程的概念(一)分式方程的概念 (1)定义:分母中含有未知数的方程叫做分式方程 (2)正确理解分式方程的概念,应注意的问题 分式方程与整式方程是相对概念,分式方程强调的是分母中含有未知
5、数,但对未知 数、次数及形式没有限制,如 2 11157 1,2, 112 x xxyxx 是分式方程, 31 342 xx 是整式方程 (2)分母中含有字母的方程不一定是分式方程,当且仅当字母中有未知数时,才是分式 方程 (二)分式方程的解法(二)分式方程的解法 1、基本思想:通过去分母把分式方程转化为整式方程,在求解。 2、一般步骤: (1)方程两边都乘以最简公分母,约去分母,化成整式方程(注意:当分母是多项式时 先分解因式,找出最简公分母) (2)解这个整式方程,求出整式方程的根 (3)检验有两种方法:将求得的整式方程的根代入最简公分母,如果最简公分母等 于 0,则这个根为原方程的增根;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 著名 机构 数学 讲义 寒假 04 年级 培优版 整式 方程 分式 教师版
链接地址:https://www.77wenku.com/p-129134.html