著名机构数学讲义春季14-七年级培优版-三角形综合复习-学生版
《著名机构数学讲义春季14-七年级培优版-三角形综合复习-学生版》由会员分享,可在线阅读,更多相关《著名机构数学讲义春季14-七年级培优版-三角形综合复习-学生版(9页珍藏版)》请在七七文库上搜索。
1、 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生学习力 第1页 教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 三角形综合复习 知识模块:知识模块:全等三角形基本模型全等三角形基本模型 1 1、轴对称型全等三角形轴对称型全等三角形 把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对 三角形综合复习 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 第2页 尚孔教育培养孩子终生学习力 E F B A D C 称,下图是常见的轴对称型全等三角形。 【例 1】 如图,在BAC的两边截取ABAC,又截取
2、ADAE,连CD、BE交于F。 试说明:AF平分BAC。 2 2、平移型全等三角形平移型全等三角形 把把ABCABC沿着某一条直线沿着某一条直线L L平行移动,所得平行移动,所得DEFDEF与与ABCABC称为平移型全等三角形。有时这条直线就是称为平移型全等三角形。有时这条直线就是 ABCABC的某一条边所在直线。下图是常见的平移型全等三角形。的某一条边所在直线。下图是常见的平移型全等三角形。 E D O E D E C D A B B B A A B C A C C D B C AD FE B A F E D C 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生
3、学习力 第3页 F D C A B E B C AD F E 【例 2】如图,在ABC和DEF中,点B、E、C、F在同一直线上,请你从以下 4 个等式中选出 3 个作 为已知条件,余下的 1 个作为结论,并说明结论正确的理由 AB = DE; AC = DF; ABC =DEF; BE = CF 3 3、旋转型全等三角形旋转型全等三角形 将将ABCABC绕顶点绕顶点B B旋转一个角度后,到达旋转一个角度后,到达DBEDBE的位置,则称的位置,则称ABCABC和和DBEDBE为旋转型全等三角形。如为旋转型全等三角形。如 下图所示,这些是常见的旋转型全等三角形(通常用边角边(下图所示,这些是常见的
4、旋转型全等三角形(通常用边角边(SASSAS)来识别两个三角形全等) 。)来识别两个三角形全等) 。 【例 3】 如图,已知ABC中,AB=AC,A=90,D是BC的中点,且DEDF。 试说明DE=DF的理由。 E D C D D E B C AA B A B C E 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 第4页 尚孔教育培养孩子终生学习力 F C D A B E O FE DC B A FE DC B A 4 4、中心对称型全等三角形中心对称型全等三角形 把把ABCABC绕着一个点绕着一个点O O旋转旋转 180180,得到,得到DEFDEF,那么这两个三角形称为中心对称
5、型全等三角形,点,那么这两个三角形称为中心对称型全等三角形,点O O 称为对称中心。中心对称型全等三角形是旋转型全等三角形的一个特例(称为对称中心。中心对称型全等三角形是旋转型全等三角形的一个特例(180) 。如图所示是常) 。如图所示是常 见的中心对称型全等三角形,对称点连线都经过对称中心见的中心对称型全等三角形,对称点连线都经过对称中心O O,且被点,且被点O O平分。平分。 【例 4】如图,AD、EF、BC相交于O点,且AOOD,BOOC,EOFO。试说明:AEBDFC。 知识模块:三角形常见辅助线知识模块:三角形常见辅助线 1 1、 等腰三角形:可作底边上的高,利用“三线合一”的性质等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 著名 机构 数学 讲义 春季 14 年级 培优版 三角形 综合 复习 学生
链接地址:https://www.77wenku.com/p-129164.html