北京四中九年级下册数学用函数观点看一元二次方程—知识讲解(基础)
《北京四中九年级下册数学用函数观点看一元二次方程—知识讲解(基础)》由会员分享,可在线阅读,更多相关《北京四中九年级下册数学用函数观点看一元二次方程—知识讲解(基础)(8页珍藏版)》请在七七文库上搜索。
1、第 1 页 共 8 页 用函数观点看一元二次方程用函数观点看一元二次方程知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1. .会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系; 2.会求抛物线与 x 轴交点的坐标,掌握二次函数与不等式之间的联系; 3.经历探索验证二次函数 2 (0)yaxbxc a与一元二次方程的关系的过程, 学会用函数的观点去看 方程和用数形结合的思想去解决问题 【要点梳理】【要点梳理】 要点一、要点一、二次函数与一元二次方程的关系二次函数与一元二次方程的关系 1.1.二次函数图象与二次函数图象与 x x 轴的交点情况决定一元二次方程根的情况
2、轴的交点情况决定一元二次方程根的情况 求二次函数 2 yaxbxc(a0)的图象与 x 轴的交点坐标,就是令 y0,求 2 0axbxc中 x 的值的问题此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与 x 轴 的交点的个数,它们的关系如下表: 判别式 2 4bac 二次函数 2 (0)yaxbxc a 一元二次方程 2 0(0)axbxca 图象 与 x 轴的交点坐标 根的情况 0 0a 抛物线 2 (0)yaxbxc a与 x 轴交于 1 ( ,0)x, 2 (,0)x 12 ()xx两 点,且 2 1,2 4 2 bbac x a , 此时称抛物线与 x 轴相交
3、一元二次方程 2 0(0)axbxca 有两个不相等的实数根 2 1,2 4 2 bbac x a 0a 0 0a 抛物线 2 (0)yaxbxc a与 x 轴交切于,0 2 b a 这一点,此时称 抛物线与 x 轴相切 一元二次方程 2 0(0)axbxca 有 两 个 相 等 的 实 数 根 12 2 b xx a 0a 0 0a 抛物线 2 (0)yaxbxc a与 x 轴无交点,此时称抛物线与 x 轴相离 一元二次方程 2 0(0)axbxca 在实数范围内无解 (或称 无实数根) 0a 第 2 页 共 8 页 要点诠释:要点诠释: 二次函数图象与 x 轴的交点的个数由的值来确定的.
4、(1)当二次函数的图象与 x 轴有两个交点时,方程有两个不相等的实根; (2)当二次函数的图象与 x 轴有且只有一个交点时,方程有两个相等的实根; (3)当二次函数的图象与 x 轴没有交点时,方程没有实根. 2.2.抛物线抛物线与直线的交点问题与直线的交点问题 抛物线与 x 轴的两个交点的问题实质就是抛物线与直线的交点问题我们把它延伸到求抛物线 2 yaxbxc(a0)与 y 轴交点和二次函数与一次函数 1 ykxb(0)k 的交点问题 抛物线 2 yaxbxc(a0)与 y 轴的交点是(0,c) 抛物线 2 yaxbxc(a0)与一次函数 1 ykxb(k0)的交点个数由方程组 1 2 ,y
5、kxb yaxbxc 的解的个数决定 当方程组有两组不同的解时两函数图象有两个交点; 当方程组有两组相同的解时两函数图象只有一个交点; 当方程组无解时两函数图象没有交点 总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题 要点诠释:要点诠释: 求两函数图象交点的问题主要运用转化思想, 即将函数的交点问题转化为求方程组解的问题或者将求 方程组的解的问题转化为求抛物线与直线的交点问题 要点二、要点二、利用二次函数图象求一元二次方程的近似解利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤: 1.作二次函数的图象,由图象确定交点个数,即方程解的个数; 2. 确定一元
6、二次方程的根的取值范围即确定抛物线 与 x 轴交点的横坐标的大致范围; 3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用 表格的形式求出相应的 y 值 4.确定一元二次方程的近似根 在(3)中最接近 0 的 y 值所对应的 x 值即是一元 二次方的近似根 要点诠释:要点诠释: 求一元二次方程的近似解的方法(图象法): 第 3 页 共 8 页 (1)直接作出函数的图象,则图象与 x 轴交点的横坐标就是方程的 根; (2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点 的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐 标系
7、中画出抛物线和直线的图象,图象交点的横坐标即为方程的 根. 要点三、要点三、抛物线与抛物线与 x x 轴的两个交点之间的距离公式轴的两个交点之间的距离公式 当0 时,设抛物线 2 yaxbxc与 x 轴的两个交点为 A( 1 x,0),B( 2 x,0),则 1 x、 2 x是一 元二次方程 2 =0axbxc的两个根由根与系数的关系得 12 b xx a , 12 c x x a 2 2121 | |()ABxxxx 2 121 2 ()4xxx x 2 4 bc aa 2 2 4bac a 2 4 | bac a 即 | | AB a (0) 要点四、要点四、抛物线与不等式的关系抛物线与不
8、等式的关系 二次函数 2 yaxbxc(a0)与一元二次不等式 2 0axbxc(a0)及 2 0axbxc(a 0)之间的关系如下 12 ()xx: 判别式 0a 抛物线 2 yaxbxc与 x 轴的交点 不等式 2 0axbxc的解集 不等式 2 0axbxc的解 集 0 1 xx或 2 xx 12 xxx 0 1 xx(或 2 xx) 无解 第 4 页 共 8 页 0 全体实数 无解 注:a0 的情况请同学们自己完成 要点诠释:要点诠释: 抛物线 2 yaxbxc在 x 轴上方的部分点的纵坐标都为正,所对应的 x 的所有值就是不等式 2 0axbxc的解集;在 x 轴下方的部分点的纵坐标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京 九年级 下册 数学 函数 观点 一元 二次方程 知识 讲解 基础
链接地址:https://www.77wenku.com/p-129696.html