北京四中九年级下册数学锐角三角函数》全章复习与巩固--知识讲解(提高)
《北京四中九年级下册数学锐角三角函数》全章复习与巩固--知识讲解(提高)》由会员分享,可在线阅读,更多相关《北京四中九年级下册数学锐角三角函数》全章复习与巩固--知识讲解(提高)(10页珍藏版)》请在七七文库上搜索。
1、第 1 页 共 10 页 锐角三角函数全章复习与巩固锐角三角函数全章复习与巩固-知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1.了解锐角三角函数的概念,能够正确使用 sinA 、cos A、tanA 表示直角三角形中两边的比;记忆 30、 45、60的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数; 2能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角 的度数; 3理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两 个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有
2、关知识解决简单的实际问题; 4通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习, 体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受. 【知识网络】【知识网络】 【要点梳理】【要点梳理】 要点一、要点一、锐角三角函数锐角三角函数 1.1.正弦、余弦、正切的定义正弦、余弦、正切的定义 如右图、在 RtABC 中,C=90,如果锐角 A 确定: (1)sinA=,这个比叫做A 的正弦. (2)cosA=,这个比叫做A 的余弦. (3)tanA=,这个比叫做A 的正切. 要点诠释:要点诠释: (1)正弦、余弦、正切是在一个直角三角形中定义的,
3、其本质是两条线段的比值,它只是一个数值, 其大小只与锐角的大小有关,而与所在直角三角形的大小无关. (2)sinA、cosA、tanA 是一个整体符号,即表示A 三个三角函数值,书写时习惯上省略符号“”, 但不能写成 sinA,对于用三个大写字母表示一个角时,其三角函数中符号“”不能省略,应 第 2 页 共 10 页 写成 sinBAC,而不能写出 sinBAC. (3)sin 2A 表示(sinA)2,而不能写成 sinA2. (4)三角函数有时还可以表示成等. 2.2.锐角三角函数的定义锐角三角函数的定义 锐角 A 的正弦、余弦、正切都叫做A 的锐角三角函数. 要点诠释:要点诠释: 1.
4、函数值的取值范围 对于锐角 A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以 sinA 是A 的函数.同样,cosA、 tanA 也是A 的函数,其中A 是自变量,sinA、cosA、tanA 分别是对应的函数.其中自变量A 的取值范 围是 0A90,函数值的取值范围是 0sinA1,0cosA1,tanA0. 2锐角三角函数之间的关系: 余角三角函数关系:“正余互化公式” 如A+B=90, 那么:sinA=cosB; cosA=sinB; 同角三角函数关系:sin 2Acos2A=1;tanA= 3.30、45、60角的三角函数值 A 30 45 60 sinA cosA tan
5、A 1 30、45、60角的三角函数值和解 30、60直角三角形和解 45直角三角形为本章重中之重, 是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练. 要点二、要点二、解直角三角形解直角三角形 在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图: 角角关系:两锐角互余,即A+B=90; 边边关系:勾股定理,即; 第 3 页 共 10 页 边角关系:锐角三角函数,即 要点诠释:要点诠释: 解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边); (2)已知一条边和
6、一个锐角(一直角边和一锐角; 斜边和一锐角) 这两种情形的共同之处: 有一条边 因 此,直角三角形可解的条件是:至少已知一条边 要点三、要点三、解直角三角形的应用解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量 关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 1.1.解这类问题的一般过程解这类问题的一般过程 (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几 何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问 题. (3
7、)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 2.2.常见应用问题常见应用问题 (1)坡度:; 坡角:. (2)方位角: (3)仰角与俯角: 第 4 页 共 10 页 要点诠释:要点诠释: 1解直角三角形的常见类型及解法 已知条件 解法步骤 RtABC 两 边 两直角边(a,b) 由求A, B=90A, 斜边,一直角边(如 c,a) 由求A, B=90A, 一 边 一 角 一直角边 和一锐角 锐角、邻边 (如A,b) B=90A, , 锐角、对边 (如A,a) B=90A, ,
8、 斜边、锐角(如 c,A) B=90A, , 2用解直角三角形的知识解决实际问题的基本方法是: 把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系 转化为图形(点、线、角等)以及图形之间的大小或位置关系 借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际 问题抽象为数学问题 当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解 第 5 页 共 10 页 3锐角三角函数的应用 用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角 形中解决问题,所以在直角三
9、角形中先考虑三角函数,可以使过程简洁。 如:射影定理不能直接用,但是用等角的三角函数值相等进行代换很简单: 【典型典型例题】例题】 类型一、类型一、锐角三角函数锐角三角函数 1在 RtABC 中,C90,若将各边长度都扩大为原来的 2 倍,则A 的正弦值是( ) A扩大 2 倍 B缩小 2 倍 C扩大 4 倍 D不变 【答案】 D; 【解析】根据 A sinA 的对边 斜边 知 sinA 的值与A 的大小有关,与 A 的对边 斜边 的比值有关 当各边长度都扩大为原来的 2 倍时,其 A 的对边 斜边 的比值不变故选 D. 【总结升华】 锐角三角函数正弦、余弦和正切反映了直角三角形中边与边的关系
10、 举一反三:举一反三: 【变式变式 1 1】已知,如图,ABC中,CEAB,BDAC, 2 5 DE BC ,求 cosA及 tanA A B C D E 【答案】易证点 B、C、D、E 四点共圆,ADEABC, 第 6 页 共 10 页 cosA= 2 , 5 ADDE ABBC tanA= 21 . 2 BD AD 【变变式式2 2】 如图所示, 已知ABC是O的内接三角形, ABc, ACb, BCa, 请你证明 sinsinsin abc ABC 【答案】 证明:O 是ABC 的外接圆,设圆的半径为 R,连结 AO 并延长交O 于点 D, 连结 CD,则BD AD 是O 的直径,ACD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京 九年级 下册 数学 锐角 三角函数 复习 巩固 知识 讲解 提高
文档标签
- 三角函数
- 第4章锐角三角函数
- 中考总复习锐角三角函数综合复习-知识讲解提高
- 北京四中九年级下册数学统计与概率-知识讲解
- 北京四中九年级下册数学二次函数全章复习与巩固知识讲解提高
- 北京四中九年级下册数学锐角三角函数巩固练习
- 北京四中九年级下册数学二次函数全章复习与巩固巩固练习提高
- 平行线全章复习与巩固提高知识讲解
- 北京四中九年级下册数学圆全章复习与巩固知识讲解基础
- 北京四中九年级下册数学圆全章复习与巩固巩固练习提高
- 北京四中九年级下册数学圆全章复习与巩固知识讲解提高
- 北京四中九年级下册数学二次函数全章复习与巩固知识讲解基础
- 北京四中九年级下册数学圆全章复习与巩固知识讲E
- 锐角三角函数综合复习-巩固练习
- 锐角三角函数综合复习-巩固练习 提高
- 20九年级数学三角函数与反三角函数公式大全
链接地址:https://www.77wenku.com/p-129707.html