高考数学一轮复习学案:2.3 函数的奇偶性与周期性(含答案)
《高考数学一轮复习学案:2.3 函数的奇偶性与周期性(含答案)》由会员分享,可在线阅读,更多相关《高考数学一轮复习学案:2.3 函数的奇偶性与周期性(含答案)(11页珍藏版)》请在七七文库上搜索。
1、 2.3 函数的奇偶性与周期性函数的奇偶性与周期性 最新考纲 考情考向分析 1.结合具体函数,了解函数奇偶性的含义 2.会运用函数图象理解和研究函数的奇偶性 3.了解函数周期性、最小正周期的含义,会判 断、应用简单函数的周期性. 以理解函数的奇偶性、 会用函数的奇偶性 为主,常与函数的单调性、周期性交汇命 题,加强函数与方程思想、转化与化归思 想的应用意识, 题型以选择、 填空题为主, 中等偏上难度. 1函数的奇偶性 奇偶性 定义 图象特点 偶函数 一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)f(x),那么函数 f(x)就叫做偶函数 关于 y 轴对称 奇函数 一般地,如
2、果对于函数 f(x)的定义域内任意一个 x,都有 f(x)f(x),那么函数 f(x)就叫做奇函数 关于原点对称 2.周期性 (1)周期函数:对于函数 yf(x),如果存在一个非零常数 T,使得当 x 取定义域内的任何值时, 都有 f(xT)f(x),那么就称函数 yf(x)为周期函数,称 T 为这个函数的周期 (2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最小的正数,那么这个最小正数 就叫做 f(x)的最小正周期 知识拓展 1函数奇偶性常用结论 (1)如果函数 f(x)是偶函数,那么 f(x)f(|x|) (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间
3、上具有相反的单 调性 (3)在公共定义域内有:奇 奇奇,偶 偶偶,奇奇偶,偶偶偶,奇偶奇 2函数周期性常用结论 对 f(x)定义域内任一自变量的值 x: (1)若 f(xa)f(x),则 T2a(a0) (2)若 f(xa) 1 fx,则 T2a(a0) (3)若 f(xa) 1 fx,则 T2a(a0) 题组一 思考辨析 1判断下列结论是否正确(请在括号中打“”或“”) (1)偶函数图象不一定过原点,奇函数的图象一定过原点( ) (2)若函数 yf(xa)是偶函数,则函数 yf(x)关于直线 xa 对称( ) (3)函数 f(x)在定义域上满足 f(xa)f(x),则 f(x)是周期为 2a
4、(a0)的周期函数( ) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件( ) (5)若 T 是函数的一个周期,则 nT(nZ,n0)也是函数的周期( ) 题组二 教材改编 2P39A 组 T6已知函数 f(x)是定义在 R 上的奇函数,且当 x0 时,f(x)x(1x),则 f(1) _. 答案 2 解析 f(1)122,又 f(x)为奇函数, f(1)f(1)2. 3P45B 组 T4设 f(x)是定义在 R 上的周期为 2 的函数,当 x1,1)时,f(x) 4x22,1x0, x,0x1, 则 f 3 2 _. 答案 1 解析 f 3 2 f 1 2 4 1 2 221. 4P
5、39A 组 T6设奇函数 f(x)的定义域为5,5,若当 x0,5时,f(x)的图象如图所示, 则不等式 f(x)0 的解集为_ 答案 (2,0)(2,5 解析 由图象可知,当 0x2 时,f(x)0;当 2x5 时,f(x)0,又 f(x)是奇函数, 当2x0 时,f(x)0,当5x0. 综上,f(x)0 的解集为(2,0)(2,5 题组三 易错自纠 5已知 f(x)ax2bx 是定义在a1,2a上的偶函数,那么 ab 的值是( ) A1 3 B. 1 3 C 1 2 D. 1 2 答案 B 解析 依题意得 f(x)f(x),b0,又 a12a, a1 3,ab 1 3,故选 B. 6偶函数
6、 yf(x)的图象关于直线 x2 对称,f(3)3,则 f(1)_. 答案 3 解析 f(x)为偶函数,f(1)f(1) 又 f(x)的图象关于直线 x2 对称, f(1)f(3)f(1)3. 题型一题型一 判断函数的奇偶性判断函数的奇偶性 典例 判断下列函数的奇偶性: (1)f(x) 3x2 x23; (2)f(x)lg1x 2 |x2|2; (3)f(x) x2x,x0, x2x,x0. 解 (1)由 3x20, x230, 得 x23,解得 x 3, 即函数 f(x)的定义域为 3, 3, f(x) 3x2 x230. f(x)f(x)且 f(x)f(x), 函数 f(x)既是奇函数又是
7、偶函数 (2)由 1x20, |x2|2, 得定义域为(1,0)(0,1),关于原点对称 x20,|x2|2x,f(x)lg1x 2 x . 又f(x)lg1x 2 x lg1x 2 x f(x), 函数 f(x)为奇函数 (3)显然函数 f(x)的定义域为(,0)(0,),关于原点对称 当 x0 时,x0, 则 f(x)(x)2xx2xf(x); 当 x0 时,x0, 则 f(x)(x)2xx2xf(x); 综上可知:对于定义域内的任意 x,总有 f(x)f(x), 函数 f(x)为奇函数 思维升华 判断函数的奇偶性,其中包括两个必备条件: (1)定义域关于原点对称,这是函数具有奇偶性的必要
8、不充分条件,所以首先考虑定义域; (2)判断 f(x)与 f(x)是否具有等量关系 在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式 f(x)f(x)0(奇函数)或 f(x) f(x)0(偶函数)是否成立 跟踪训练 (1)下列函数中,既不是奇函数,也不是偶函数的是( ) Ayxsin 2x Byx2cos x Cy2x 1 2x Dyx2sin x 答案 D 解析 对于 A,f(x)xsin 2(x)(xsin 2x)f(x),为奇函数; 对于 B,f(x)(x)2cos(x)x2cos xf(x),为偶函数; 对于 C,f(x)2 x1 2 x2x 1 2xf(x),为偶函数; 对于
9、D,yx2sin x 既不是偶函数也不是奇函数, 故选 D. (2)函数 f(x)loga(2x),g(x)loga(2x)(a0 且 a1),则函数 F(x)f(x)g(x),G(x)f(x) g(x)的奇偶性是( ) AF(x)是奇函数,G(x)是奇函数 BF(x)是偶函数,G(x)是奇函数 CF(x)是偶函数,G(x)是偶函数 DF(x)是奇函数,G(x)是偶函数 答案 B 解析 F(x),G(x)定义域均为(2,2), 由已知 F(x)f(x)g(x)loga(2x)loga(2x)F(x), G(x)f(x)g(x)loga(2x)loga(2x)G(x), F(x)是偶函数,G(x
10、)是奇函数 题型二题型二 函数的周期性及其应用函数的周期性及其应用 1(2017 西安一模)奇函数 f(x)的定义域为 R,若 f(x1)为偶函数,且 f(1)2,则 f(4)f(5) 的值为( ) A2 B1 C1 D2 答案 A 解析 f(x1)为偶函数, f(x1)f(x1),则 f(x)f(x2), 又 yf(x)为奇函数,则 f(x)f(x)f(x2),且 f(0)0. 从而 f(x4)f(x2)f(x),yf(x)的周期为 4. f(4)f(5)f(0)f(1)022. 2 (2017 山东)已知 f(x)是定义在 R 上的偶函数, 且 f(x4)f(x2) 若当 x3,0时, f
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习
链接地址:https://www.77wenku.com/p-130399.html