高考数学一轮复习学案:3.1 导数的概念及运算(含答案)
《高考数学一轮复习学案:3.1 导数的概念及运算(含答案)》由会员分享,可在线阅读,更多相关《高考数学一轮复习学案:3.1 导数的概念及运算(含答案)(9页珍藏版)》请在七七文库上搜索。
1、 3.1 导数的概念及运算导数的概念及运算 最新考纲 考情考向分析 1.了解导数概念的实际背景 2.通过函数图象直观理解导数的几何意义 3.能根据导数定义求函数 yc(c 为常数), y x,yx2,yx3,y1 x,y x的导数 4.能利用基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数,(理)能求简 单的复合函数(仅限于形如 f(axb)的复合函 数)的导数. 导数的概念和运算是高考的必考 内容,一般渗透在导数的应用中 考查;导数的几何意义常与解析 几何中的直线交汇考查;题型为 选择题或解答题的第(1)问,低档 难度. 1导数与导函数的概念 (1)一般地,函数 yf(x)在 x
2、x0处的瞬时变化率是 lim x0 y x limx0 fx0xfx0 x , 我们称它为函数 yf(x)在 xx0处的导数,记作 f(x0)或 0 x x y ,即 f(x0) lim x0 y x lim x0 fx0xfx0 x . (2)如果函数 yf(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新 函数,这个函数称为函数 yf(x)在开区(a,b)间内的导函数记作 f(x)或 y. 2导数的几何意义 函数 yf(x)在点 x0处的导数的几何意义, 就是曲线 yf(x)在点 P(x0, f(x0)处的切线的斜率 k, 即 kf(x0) 3基本初等函数的导数
3、公式 基本初等函数 导函数 f(x)c(c 为常数) f(x)0 f(x)x(Q*) f(x)x 1 f(x)sin x f(x)cos x f(x)cos x f(x)sin x f(x)ex f(x)ex f(x)ax(a0,a1) f(x)axln a f(x)ln x f(x)1 x f(x)logax(a0,a1) f(x) 1 xln a 4.导数的运算法则 若 f(x),g(x)存在,则有 (1)f(x) g(x)f(x) g(x); (2)f(x) g(x)f(x)g(x)f(x)g(x); (3) fx gx fxgxfxgx gx2 (g(x)0) 5复合函数的导数 复合函
4、数 yf(g(x)的导数和函数 yf(u),ug(x)的导数间的关系为 yxyu ux,即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 知识拓展 1奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数 2af(x)bg(x)af(x)bg(x) 3函数 yf(x)的导数 f(x)反映了函数 f(x)的瞬时变化趋势,其正负号反映了变化的方向, 其大小|f(x)|反映了变化的快慢,|f(x)|越大,曲线在这点处的切线越“陡” 题组一 思考辨析 1判断下列结论是否正确(请在括号中打“”或“”) (1)f(x0)是函数 yf(x)在 xx0附近的平均变化率
5、( ) (2)f(x0)与f(x0)表示的意义相同( ) (3)与曲线只有一个公共点的直线一定是曲线的切线( ) (4)函数 f(x)sin(x)的导数是 f(x)cos x( ) 题组二 教材改编 2P85A 组 T5若 f(x)x ex,则 f(1) . 答案 2e 解析 f(x)exxex,f(1)2e. 3P18A 组 T6曲线 y1 2 x2在点(1,1)处的切线方程为 答案 2xy10 解析 y 2 x22,y|x 12. 故所求切线方程为 2xy10. 题组三 易错自纠 4 如图所示为函数 yf(x), yg(x)的导函数的图象, 那么 yf(x), yg(x)的图象可能是( )
6、 答案 D 解析 由 yf(x)的图象知,yf(x)在(0,)上单调递减,说明函数 yf(x)的切线的斜 率在(0,)上也单调递减,故可排除 A,C. 又由图象知 yf(x)与 yg(x)的图象在 xx0处相交,说明 yf(x)与 yg(x)的图象在 x x0处的切线的斜率相同,故可排除 B.故选 D. 5有一机器人的运动方程为 st23 t(t 是时间,s 是位移),则该机器人在时刻 t2 时的瞬时 速度为( ) A.19 4 B.17 4 C.15 4 D.13 4 答案 D 6设函数 f(x)的导数为 f(x),且 f(x)f 2 sin xcos x,则 f 4 . 答案 2 解析 因
7、为 f(x)f 2 sin xcos x, 所以 f(x)f 2 cos xsin x, 所以 f 2 f 2 cos 2sin 2, 即 f 2 1,所以 f(x)sin xcos x, f(x)cos xsin x. 故 f 4 cos 4sin 4 2. 7已知函数 f(x)ax3x1 的图象在点(1,f(1)处的切线过点(2,7),则 a . 答案 1 解析 f(x)3ax21,f(1)3a1, 又 f(1)a2, 切线方程为 y(a2)(3a1)(x1), 又点(2,7)在切线上,可得 a1. 题型一题型一 导数的计算导数的计算 1f(x)x(2 018ln x),若 f(x0)2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习
链接地址:https://www.77wenku.com/p-130407.html