高考数学一轮复习学案:直线、平面平行的判定与性质(含答案)
《高考数学一轮复习学案:直线、平面平行的判定与性质(含答案)》由会员分享,可在线阅读,更多相关《高考数学一轮复习学案:直线、平面平行的判定与性质(含答案)(11页珍藏版)》请在七七文库上搜索。
1、 8.4 直线直线、平面平行的判定与性质平面平行的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、公理和定理为出发 点,认识和理解空间中线面平行的有关性 质与判定定理. 2.能运用公理、 定理和已获得的结论证明一 些有关空间图形的平行关系的简单命题. 直线、平面平行的判定及其性质是高考中的 重点考查内容,涉及线线平行、线面平行、 面面平行的判定及其应用等内容题型主要 以解答题的形式出现,解题要求有较强的推 理论证能力,广泛应用转化与化归的思想. 1线面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定 定理 平面外一条直线与此平面内的一条直线 平行,则该直线与此平面平行(简
2、记为 “线线平行线面平行”) la a l l 性质 定理 一条直线与一个平面平行,则过这条直 线的任一平面与此平面的交线与该直线 平行(简记为“线面平行线线平行”) l l b lb 2.面面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定 定理 一个平面内的两条相交直线与另一 个平面平行,则这两个平面平行(简 记为“线面平行面面平行”) a b abP a b 性质 定理 如果两个平行平面同时和第三个平 面相交,那么它们的交线平行 a b ab 知识拓展 重要结论: (1)垂直于同一条直线的两个平面平行,即若 a,a,则 . (2)垂直于同一个平面的两条直线平行,即若 a,b,
3、则 ab. (3)平行于同一个平面的两个平面平行,即若 ,则 . 题组一 思考辨析 1判断下列结论是否正确(请在括号中打“”或“”) (1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面( ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线( ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行( ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面( ) (5)若直线 a 与平面 内无数条直线平行,则 a.( ) (6)若 ,直线 a,则 a.( ) 题组二 教材改编 2P61A 组 T1(1)下列命题中正确的是(
4、) A若 a,b 是两条直线,且 ab,那么 a 平行于经过 b 的任何平面 B若直线 a 和平面 满足 a,那么 a 与 内的任何直线平行 C平行于同一条直线的两个平面平行 D若直线 a,b 和平面 满足 ab,a,b,则 b 答案 D 解析 A 中,a 可以在过 b 的平面内;B 中,a 与 内的直线也可能异面;C 中,两平面可相 交;D 中,由直线与平面平行的判定定理知 b,正确 3P62A 组 T3如图,在正方体 ABCDA1B1C1D1中,E 为 DD1的中点,则 BD1与平面 AEC 的位置关系为_ 答案 平行 解析 连接 BD,设 BDACO,连接 EO, 在BDD1中, E 为
5、 DD1的中点, O 为 BD 的中点, 所以 EO 为BDD1的中位线, 则 BD1EO, 而 BD1平面 ACE,EO平面 ACE, 所以 BD1平面 ACE. 题组三 易错自纠 4若平面 平面 ,直线 a平面 ,点 B,则在平面 内且过 B 点的所有直线中( ) A不一定存在与 a 平行的直线 B只有两条与 a 平行的直线 C存在无数条与 a 平行的直线 D存在唯一与 a 平行的直线 答案 A 解析 当直线 a 在平面 内且过 B 点时,不存在与 a 平行的直线,故选 A. 5设 , 为三个不同的平面,a,b 为直线,给出下列条件: a,b,a,b;,; ,;a,b,ab. 其中能推出
6、的条件是_(填上所有正确的序号) 答案 解析 在条件或条件中, 或 与 相交; 由 ,条件满足; 在中,a,abb,又 b,从而 ,满足 6.如图是长方体被一平面所截得的几何体,四边形 EFGH 为截面,则四边形 EFGH 的形状为 _ 答案 平行四边形 解析 平面 ABFE平面 DCGH, 又平面 EFGH平面 ABFEEF,平面 EFGH平面 DCGHHG, EFHG.同理 EHFG, 四边形 EFGH 是平行四边形 题型一 直线与平面平行的判定与性质 命题点 1 直线与平面平行的判定 典例 如图,在四棱锥 PABCD 中,ADBC,ABBC1 2AD,E,F,H 分别为线段 AD, PC
7、,CD 的中点,AC 与 BE 交于 O 点,G 是线段 OF 上一点 (1)求证:AP平面 BEF; (2)求证:GH平面 PAD. 证明 (1)连接 EC, ADBC,BC1 2AD, BC 綊 AE, 四边形 ABCE 是平行四边形, O 为 AC 的中点 又 F 是 PC 的中点,FOAP, 又 FO平面 BEF,AP平面 BEF,AP平面 BEF. (2)连接 FH,OH,F,H 分别是 PC,CD 的中点, FHPD,又 PD平面 PAD,FH平面 PAD, FH平面 PAD. 又 O 是 BE 的中点,H 是 CD 的中点, OHAD,又 AD平面 PAD,OH平面 PAD, O
8、H平面 PAD. 又 FHOHH,平面 OHF平面 PAD. 又 GH平面 OHF,GH平面 PAD. 命题点 2 直线与平面平行的性质 典例 (2017 长沙调研)如图,四棱锥 PABCD 的底面是边长为 8 的正方形,四条侧棱长均为 2 17.点 G,E,F,H 分别是棱 PB,AB,CD,PC 上共面的四点,平面 GEFH平面 ABCD, BC平面 GEFH. (1)证明:GHEF; (2)若 EB2,求四边形 GEFH 的面积 (1)证明 因为 BC平面 GEFH,BC平面 PBC, 且平面 PBC平面 GEFHGH,所以 GHBC. 同理可证 EFBC,因此 GHEF. (2)解 如
9、图, 连接 AC, BD 交于点 O, BD 交 EF 于点 K, 连接 OP, GK. 因为 PAPC,O 是 AC 的中点,所以 POAC, 同理可得 POBD. 又 BDACO,且 AC,BD底面 ABCD, 所以 PO底面 ABCD. 又因为平面 GEFH平面 ABCD, 且 PO平面 GEFH,所以 PO平面 GEFH. 因为平面 PBD平面 GEFHGK, 所以 POGK,且 GK底面 ABCD, 从而 GKEF. 所以 GK 是梯形 GEFH 的高 由 AB8,EB2 得 EBABKBDB14, 从而 KB1 4DB 1 2OB,即 K 为 OB 的中点 再由 POGK 得 GK
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 直线 平面 平行 判定 性质 答案
链接地址:https://www.77wenku.com/p-130481.html