2018-2019学年江西省鹰潭市高二(上)期末数学试卷(文科)含详细解答
《2018-2019学年江西省鹰潭市高二(上)期末数学试卷(文科)含详细解答》由会员分享,可在线阅读,更多相关《2018-2019学年江西省鹰潭市高二(上)期末数学试卷(文科)含详细解答(21页珍藏版)》请在七七文库上搜索。
1、 第 1 页(共 21 页) 2018-2019 学年江西省鹰潭市高二(上)期末数学试卷(文科)学年江西省鹰潭市高二(上)期末数学试卷(文科) 一、选择题(每小题一、选择题(每小题 5 分,共分,共 12 个小题,本题满分个小题,本题满分 60 分)分) 1 (5 分)命题“若 ab,则 a+1b”的逆否命题是( ) A若 a+1b,则 ab B若 a+1b,则 ab C若 a+1b,则 ab D若 a+1b,则 ab 2 (5 分)某中学初中部共有 120 名教师,高中部共有 150 名教师,其性别比例如图所示, 则该校女教师的人数为( ) A128 B144 C174 D167 3 (5
2、分)对变量 x,y 有观测数据(xi,yi) (i1,2,10) ,得散点图(1) ;对变量 u, v,有观测数据(ui,vi) (i1,2,10) ,得散点图(2) ,由这两个散点图可以判断 ( ) A变量 x 与 y 正相关,u 与 v 正相关 B变量 x 与 y 正相关,u 与 v 负相关 C变量 x 与 y 负相关,u 与 v 正相关 D变量 x 与 y 负相关,u 与 v 负相关 4 (5 分)函数 f(x)(xa) (xb)在 xa 处的导数为( ) Aab Ba(ab) C0 Dab 5 (5 分)已知变量 a,b 已被赋值,要交换 a、b 的值,应采用的算法是( ) Aab,b
3、a Bac,ba,cb Cac,ba,ca Dca,ab,bc 6 (5 分)随机猜测“选择题”的答案,每道题猜对的概率为 0.25,则两道选择题至少猜对 第 2 页(共 21 页) 一道以上的概率约为( ) A B C D 7 (5 分)已知一组数据 x1,x2,x3,x4,x5的平均数是 2,方差是,那么另一组数据 3x1 2,3x22,3x32,3x42,3x52 的平均数和方差分别为( ) A2, B4,3 C4, D2,1 8 (5 分)设函数 f(x)在 R 上可导,其导函数 f(x) ,且函数 f(x)在 x2 处取得极 小值,则函数 yxf(x)的图象可能是( ) A B C
4、D 9 (5 分)在区间(0,1)中随机地取出两个数,则两数之和小于的概率是( ) A B C D 10 (5 分)已知椭圆:+1(0b2) ,左右焦点分别为 F1,F2,过 F1的直线 l 交椭圆于 A,B 两点,若|+|的最大值为 5,则 b 的值是( ) A1 B C D 11 (5 分)已知偶函数 f(x) (x0)的导函数为 f(x) ,且满足 f(2)0,当 x0 时, xf(x)2f(x) ,则使得 f(x)0 的 x 的取值范围为( ) A (,2)(0,2) B (,2)(2,+) C (2,0)(0,2) D (2,0)(2,+) 12 (5 分)过抛物线 x28y 的焦点
5、做直线 l 交抛物线于 A,B 两点,分别过 A,B 作抛物线 的切线 l1,l2,则 l1与 l2的交点 P 的轨迹方程是( ) Ay2 By1 Cyx1 Dyx1 二、填空题(每小题二、填空题(每小题 5 分,共分,共 4 小题,满分小题,满分 20 分)分) 第 3 页(共 21 页) 13 (5 分)执行程序框图,输出的 T 14 (5 分)若“x21”是“xa”的必要不充分条件,则 a 的最大值为 15 (5 分)如图,F1,F2是椭圆 C1:+y21 与双曲线 C2的公共焦点,A,B 分别是 C1, C2在第二、四象限的公共点若四边形 AF1BF2为矩形,则 C2的离心率是 16
6、(5 分)若实数 a,b,c,d 满足|b+a24lna|+|2cd+1|0,则(ac)2+(bd)2的 最小值为 三、解答题(本大题共三、解答题(本大题共 6 小题,小题,17 题题 10 分,分,18-22 题均为题均为 12 分,共计分,共计 70 分,解答时应写分,解答时应写 出解答过程或证明步骤)出解答过程或证明步骤)x3456y2.5344.5 17 (10 分)如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 x(吨)与 相应的生产能耗 y(吨标准煤)的几组对照数据 x 3 4 5 6 y 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数
7、据,用最小二乘法求出 y 关于 x 的线性回归方程 ybx+a; (参考数值:32.5+43+54+64.566.5) 18 (12 分)小李在做一份调查问卷,共有 4 道题,其中有两种题型,一种是选择题,共 2 第 4 页(共 21 页) 道,另一种是填空题,共 2 道 (1)小李从中任选 2 道题解答,每一次选 1 题(不放回) ,求所选的题不是同一种题型 的概率; (2)小李从中任选 2 道题解答,每一次选 1 题(有放回) ,求所选的题不是同一种题型 的概率 19 (12 分)设两个命题:p:关于 x 的不等式 x2+2ax+40 对一切 xR 恒成立,q:函数 f (x)(42a)x
8、在(,+)上是减函数,若命题 pq 为真,pq 为假,则 实数 a 的取值范围是多少? 20 (12 分)某物流公司购买了一块长 AM90 米,宽 AN30 米的矩形地块 AMPN,规划 建设占地如图中矩形 ABCD 的仓库,其余地方为道路和停车场,要求顶点 C 在地块对角 线 MN 上,B、D 分别在边 AM、AN 上,假设 AB 长度为 x 米若规划建设的仓库是高度 与 AB 的长相同的长方体建筑,问 AB 长为多少时仓库的库容最大?(墙体及楼板所占空 间忽略不计) 21 (12 分)已知 M(x1,y1)是椭圆+1(ab0)上任意一点,F 为椭圆的右焦 点 (1)若椭圆的离心率为 e,试
9、用 e,a,x1表示|MF|,并求|MF|的最值; (2)已知直线 m 与圆 x2+y2b2相切,并与椭圆交于 A、B 两点,且直线 m 与圆的切点 Q 在 y 轴右侧,若 a4,求ABF 的周长 22 (12 分)已知函数 f(x)ln(x1)k(x1)+1 (1)求函数 f(x)的单调区间; 第 5 页(共 21 页) (2)若 f(x)0 恒成立,试确定实数 k 的取值范围; (3)证明:且 n1) 第 6 页(共 21 页) 2018-2019 学年江西省鹰潭市高二(上)期末数学试卷(文科)学年江西省鹰潭市高二(上)期末数学试卷(文科) 参考答案与试题解析参考答案与试题解析 一、选择题
10、(每小题一、选择题(每小题 5 分,共分,共 12 个小题,本题满分个小题,本题满分 60 分)分) 1 (5 分)命题“若 ab,则 a+1b”的逆否命题是( ) A若 a+1b,则 ab B若 a+1b,则 ab C若 a+1b,则 ab D若 a+1b,则 ab 【分析】根据逆否命题的定义,根据原命题为“若 ab,则 a+1b” ,我们易求出命题 “若 ab,则 a+1b”的逆否命题 【解答】解:命题“若 ab,则 a+1b”的逆否命题 “若 a+1b,则 ab” 故选:C 【点评】本题考查的知识点是四种命题间的逆否关系,熟练掌握四种命题的定义是解答 的关键 2 (5 分)某中学初中部共
11、有 120 名教师,高中部共有 150 名教师,其性别比例如图所示, 则该校女教师的人数为( ) A128 B144 C174 D167 【分析】根据教师百分百,分别计算初中部和高中部女教师的人数即可 【解答】解:初中部女教师有 12070%84 人, 高中部女教师有 150(160%)15040%60 人, 则女教师共有 84+60144 人, 故选:B 【点评】本题主要考查统计的应用,结合所占比例进行计算是解决本题的关键 3 (5 分)对变量 x,y 有观测数据(xi,yi) (i1,2,10) ,得散点图(1) ;对变量 u, v,有观测数据(ui,vi) (i1,2,10) ,得散点图
12、(2) ,由这两个散点图可以判断 ( ) 第 7 页(共 21 页) A变量 x 与 y 正相关,u 与 v 正相关 B变量 x 与 y 正相关,u 与 v 负相关 C变量 x 与 y 负相关,u 与 v 正相关 D变量 x 与 y 负相关,u 与 v 负相关 【分析】通过观察散点图得出:y 随 x 的增大而减小,各点整体呈下降趋势,x 与 y 负相 关, u 随 v 的增大而增大,各点整体呈上升趋势,u 与 v 正相关 【解答】解:由题图 1 可知,y 随 x 的增大而减小,各点整体呈下降趋势,x 与 y 负相关, 由题图 2 可知,u 随 v 的增大而增大,各点整体呈上升趋势,u 与 v
13、正相关 故选:C 【点评】本题考查了散点图的应用问题,通过读图来解决问题,是基础题 4 (5 分)函数 f(x)(xa) (xb)在 xa 处的导数为( ) Aab Ba(ab) C0 Dab 【分析】先求导,再代入值,解得答案 【解答】解:f(x)(xa) (xb) , f(x)2x(a+b) , f(a)2a(a+b)ab, 故选:D 【点评】本题主要考查了导数的运算法则,属于基础题 5 (5 分)已知变量 a,b 已被赋值,要交换 a、b 的值,应采用的算法是( ) Aab,ba Bac,ba,cb Cac,ba,ca Dca,ab,bc 【分析】交换两个数的赋值必须引入一个中间变量,其
14、功能是暂时储存的功能,根据赋 值规则即可得到答案 第 8 页(共 21 页) 【解答】解:由算法规则引入中间变量 c,语句如下 ca ab bc 故选:D 【点评】本题考查赋值语句,解题关键是理解赋值语句的作用,格式 6 (5 分)随机猜测“选择题”的答案,每道题猜对的概率为 0.25,则两道选择题至少猜对 一道以上的概率约为( ) A B C D 【分析】利用 n 次独立重复试验中事件 A 恰好发生 k 次的概率计算公式直接求解 【解答】解:随机猜测“选择题”的答案,每道题猜对的概率为 0.25, 两道选择题至少猜对一道以上的概率约为: p 故选:A 【点评】本题考查概率的求法,考查 n 次
15、独立重复试验中事件 A 恰好发生 k 次的概率计 算公式等基础知识,考查运算求解能力,是基础题 7 (5 分)已知一组数据 x1,x2,x3,x4,x5的平均数是 2,方差是,那么另一组数据 3x1 2,3x22,3x32,3x42,3x52 的平均数和方差分别为( ) A2, B4,3 C4, D2,1 【分析】本题可将平均数和方差公式中的 x 换成 3x2,再化简进行计算 【解答】解:x1,x2,x5的平均数是 2,则 x1+x2+x52510 数据 3x12,3x22,3x32,3x42,3x52 的平均数是: (3x12)+(3x2 2)+(3x32)+(3x42)+(3x52)3(x
16、1+x2+x5)104, S2(3x124)2+(3x224)2+(3x524)2, (3x16)2+(3x56)29(x12)2+(x22)2+(x52)23 故选:B 【点评】本题考查的是方差和平均数的性质设平均数为 E(x) ,方差为 D(x) 则 E 第 9 页(共 21 页) (cx+d)cE(x)+d;D(cx+d)c2D(x) 8 (5 分)设函数 f(x)在 R 上可导,其导函数 f(x) ,且函数 f(x)在 x2 处取得极 小值,则函数 yxf(x)的图象可能是( ) A B C D 【分析】由题设条件知:当 x2 时,xf(x)0;当 x2 时,xf(x)0;当 x2 时
17、,xf(x)0由此观察四个选项能够得到正确结果 【解答】解:函数 f(x)在 R 上可导,其导函数 f(x) , 且函数 f(x)在 x2 处取得极小值, 当 x2 时,f(x)0; 当 x2 时,f(x)0; 当 x2 时,f(x)0 当 x2 时,xf(x)0; 当 x2 时,xf(x)0; 当 x2 时,xf(x)0 故选:A 【点评】本题考查利用导数研究函数的极值的应用,解题时要认真审题,注意导数性质 和函数极值的性质的合理运用 9 (5 分)在区间(0,1)中随机地取出两个数,则两数之和小于的概率是( ) A B C D 【分析】先设随机地取出两个数为 x、y,则 x,y(0,1)
18、,记“两数之和小于”为事 件 A,即“x+y“为事件 A,再作出相应不等式表示的平面区域, 第 10 页(共 21 页) 由几何概型中的面积型公式可得:P(A)1,得解 【解答】 解:设随机地取出两个数为 x、y,则 x,y(0,1) , 记“两数之和小于”为事件 A, 即“x+y“为事件 A, 由几何概型中的面积型公式可得: P(A)1, 故选:A 【点评】本题考查了几何概型中的面积型,属简单题 10 (5 分)已知椭圆:+1(0b2) ,左右焦点分别为 F1,F2,过 F1的直线 l 交椭圆于 A,B 两点,若|+|的最大值为 5,则 b 的值是( ) A1 B C D 【分析】利用椭圆的
19、定义,结合的最大值为 5,可得当且仅当 ABx 轴时,|AB|的最小值为 3,由此可得结论 【解答】解:由题意:+|AB|4a8 的最大值为 5,|AB|的最小值为 3 第 11 页(共 21 页) 当且仅当 ABx 轴时,取得最小值,此时 A(c,) ,B(c,) 代入椭圆方程可得: c24b2 b 故选:D 【点评】本题考查椭圆的定义,考查学生的计算能力,属于基础题 11 (5 分)已知偶函数 f(x) (x0)的导函数为 f(x) ,且满足 f(2)0,当 x0 时, xf(x)2f(x) ,则使得 f(x)0 的 x 的取值范围为( ) A (,2)(0,2) B (,2)(2,+)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 江西省 鹰潭市 期末 数学试卷 文科 详细 解答
链接地址:https://www.77wenku.com/p-131420.html