2018-2019学年江西省景德镇市八年级(上)期中数学试卷(含详细解答)
《2018-2019学年江西省景德镇市八年级(上)期中数学试卷(含详细解答)》由会员分享,可在线阅读,更多相关《2018-2019学年江西省景德镇市八年级(上)期中数学试卷(含详细解答)(23页珍藏版)》请在七七文库上搜索。
1、2018-2019 学年江西省景德镇市八年级(上)期中数学试卷一、选择题(本大题共 6 小题,每小题小题,每小题 3 分,共分,共 18 分分.每小题只有一个正确选项)每小题只有一个正确选项) 1 (3 分)的倒数是( ) A3 B C D 2 (3 分)已知点 A(2,1) ,点 B 与点 A 关于 y 轴对称,则点 B 的坐标为( ) A (2,1) B (2,1) C (2,1) D (1,2) 3 (3 分)在ABC 中,A,B,C 的对边分别是 a,b,c,且 a2b2c2,则( ) AA90 BB90 CC90 D不确定哪个角是直角 4 (3 分)在 3.14,0.10010001
2、,3. ,中,无理数有( ) A1 个 B2 个 C3 个 D4 个 5 (3 分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点 O 出发,按向右, 向上,向右,向下的方向依次不断移动,每次移动 1m其行走路线如图所示,第 1 次移 动到 A1,第 2 次移动到 A2,第 n 次移动到 An则OA2A2018的面积是( ) A504m2 Bm2 Cm2 D1009m2 6 (3 分)如图,直角三角形 DEF 中,DFE90,在直角三角形外面作正方形 ABDE, CDFI,EFGH 的面积分别为 25,9,16,AEH,BDC,GFI 的面积分别为 S1,S2, S3,则 S1+S2+
3、S3( ) A18 B21 C23.5 D26 第 2 页(共 23 页) 二、填空题(本大题共二、填空题(本大题共 6 小题,每小题小题,每小题 3 分,共分,共 18 分)分) 7 (3 分)实数的平方根是 8 (3 分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分 别是(4,1)和(2,3) ,那么“卒”的坐标为 9 (3 分)如图,某自动感应门的正上方装着一个感应器,离地 2.5 米,当物体进入感应器 的感应范围内时,感应门就会自动打开一个身高 1.6 米的学生正对门,缓慢走到离门 1.2 米的地方时,感应门才自动打开,则感应器的最大感应距离是 米 10 (3
4、 分)已知两个连续整数 a,b 满足 ab,则 a+b 11 (3 分)如图,在ABC 中,BAC90,ABAC,ABC 的三个顶点在互相平行的 三条直线 l1,l2,l3上,且 l1,l2之间的距离是 1,l2,l3之间的距离是 2,则 BC 的长度 为 12 (3 分)在平面直角坐标系 xOy 中,已知点 A(1,0) ,点 B(0,2) ,点 C 在 x 轴上, ABC 是以线段 AB 为腰的等腰三角形,则点 C 的坐标为 三、解答题(本大题共三、解答题(本大题共 3 小题,每小题小题,每小题 6 分,共分,共 18 分)分) 13 (6 分)先化简,再求值: (a+b)2(a+b) (
5、ab)2b2,其中 a,b 14 (6 分)如图,在平面直角坐标系中,平行四边形 ABCD 的四个顶点的坐标分别为 A( 1,a) ,B(b,1) ,C(1,3) ,D(2,0) ,请回答下列问题: 第 3 页(共 23 页) (1)点 A 在第 象限,它的坐标是(1, ) ; (2)点 B 在第 象限,它的坐标是( ,1) ; (3)将平行四边形 ABCD 上每个顶点的横坐标保持不变,纵坐标都乘以1,再顺次连 接这些点,所得图形与平行四边形 ABCD 关于 轴对称 15 (6 分)如图,在 96 的正方形网格中,线段 AB,BC 的端点均在格点(每个小正方形 的顶点)上,请仅用无刻度的直尺按
6、下列要求画图 (1)在图中,选取一个格点 D,连接 AD,BD,CD,使ABD 和BCD 都是直角三 角形; (2)在图中,选取一个格点 E,连接 AE,BE,CE,使ABE 和BCE 都是以 BE 为 直角边的直角三角形,且其中一个三角形的面积是另一个三角形面积的 2 倍 四、解答题(本大题共四、解答题(本大题共 4 小题,每小题小题,每小题 7 分,共分,共 28 分)分) 16 (7 分)如图,已知 OAOB,数轴上点 A 表示的数为 a (1)a ; (2)比较大小:a 2.4(填“”或“” ) (3)求的值 17 (7 分)如图,在长方形 ABCD 中,AB6,AD10,在 CD 上
7、取一点 F,将ADF 沿 AF 折叠后,点 D 恰好落在 BC 边上的点 E 处 第 4 页(共 23 页) (1)求线段 BE 的长; (2)求CEF 的面积 18 (7 分)如图,在平面直角坐标系中,每个小正方形的边长均为 1,请回答下列问题: (1)点 A 的坐标是 ,点 B 的坐标是 ; (2)分别求出线段 OB 和线段 AB 的长度 19 (7 分)已知:如图,ABC 中,C90,D 为 AB 的中点,E、F 分别在 AC、BC 上,且 DEDF求证:AE2+BF2EF2 五、解答题(本大题共五、解答题(本大题共 2 小题,每小题小题,每小题 9 分,共分,共 18 分分) 20 (
8、9 分)已知实数 a,b,c 满足+|b+a|+(c6)20,请回答下列问题: (1)求 a,b,c 的值; (2)判断以 a,b,c 为三边长的三角形的形状 21 (9 分)已知平面直角坐标系中一点 A(2a+3,a2) ,分别求出满足下列条件的 a 的值 (1)点 A 在 x 轴上; (2)点 A 在过点(1,2)且与 y 轴平行的直线上; 第 5 页(共 23 页) (3)点 A 到 x 轴的距离为 5; (4)点 A 到 x 轴与 y 轴的距离相等 六、附加题(本大题共六、附加题(本大题共 2 小题,每小题小题,每小题 10 分,共分,共 20 分)分) 22 (10 分)我们已经知道
9、(+3) (3)4,因此,在计算时,可以将分 子,分母同时乘以(+3)进行化前如下: 2+6 请运用上述方法进行以下化简: (1) (直接填空) ; (2)+; (3)+ (提示:) 23 (10 分) 【背景介绍】勾股定理是几何学中的明珠,充满着魅力千百年来,人们对它 的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者向常春在 1994 年构造发 现了一个新的证法 【小试牛刀】把两个全等的直角三角形如图 1 放置,其三边长分别为 a,b,c显然, DABB90,ACDE请用 a,b,c 分别表示出梯形 ABCD,四边形 AECD, EBC 的面积, 再探究这三个图形面积之间的关系, 可得
10、到勾股定理: S梯形ABCD , SEBC ,S四边形AECD ,则它们满足的关系式为 ,经化简,可得 到勾股定理 【知识运用】如图 2,河道上 A,B 两点(看作直线上的两点)相距 160 米,C,D 为两 个菜园(看作两个点) ,ADAB,BCAB,垂足分别为 A,B,AD70 米,BC50 米, 现在菜农要在 AB 上确定一个抽水点 P,使得抽水点 P 到两个菜园 C,D 的距离和最短, 则该最短距离为 米 【知识迁移】借助上面的思考过程,求代数式+的最小值(0x 12) 第 6 页(共 23 页) 第 7 页(共 23 页) 2018-2019 学年江西省景德镇市八年级(上)期中数学学
11、年江西省景德镇市八年级(上)期中数学试卷试卷 参考答案与试题解析参考答案与试题解析 一、选择题(本大题共一、选择题(本大题共 6 小题,每小题小题,每小题 3 分,共分,共 18 分分.每小题只有一个正确选项)每小题只有一个正确选项) 1 (3 分)的倒数是( ) A3 B C D 【分析】根据倒数的定义解答 【解答】解:的倒数是: 故选:B 【点评】 此题主要考查了倒数的定义: 若两个数的乘积是 1, 我们就称这两个数互为倒数 2 (3 分)已知点 A(2,1) ,点 B 与点 A 关于 y 轴对称,则点 B 的坐标为( ) A (2,1) B (2,1) C (2,1) D (1,2) 【
12、分析】直接利用关于 y 轴对称点的性质得出答案 【解答】解:点 A(2,1) ,点 B 与点 A 关于 y 轴对称, 点 B 的坐标为: (2,1) 故选:C 【点评】此题主要考查了关于 y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键 3 (3 分)在ABC 中,A,B,C 的对边分别是 a,b,c,且 a2b2c2,则( ) AA90 BB90 CC90 D不确定哪个角是直角 【分析】利用勾股定理的逆定理进行判断 【解答】解:在ABC 中,A,B,C 的对边分别是 a,b,c,且 a2b2c2, b2+c2a2 b、c 是两直角边,c 是斜边, A90 故选:A 【点评】考查了勾股定理
13、的逆定理 :如果三角形的三边长 a,b,c 满足 a2+b2c2,那 么这个三角形就是直角三角形 第 8 页(共 23 页) 4 (3 分)在 3.14,0.10010001,3. ,中,无理数有( ) A1 个 B2 个 C3 个 D4 个 【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概 念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环 小数是无理数由此即可判定选择项 【解答】解:在所列的实数中,无理数有 ,这 2 个, 故选:B 【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2 等; 开方开不尽的数;以及像 0.1
14、010010001,等有这样规律的数 5 (3 分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点 O 出发,按向右, 向上,向右,向下的方向依次不断移动,每次移动 1m其行走路线如图所示,第 1 次移 动到 A1,第 2 次移动到 A2,第 n 次移动到 An则OA2A2018的面积是( ) A504m2 Bm2 Cm2 D1009m2 【分析】由 OA4n2n 知 OA2017+11009,据此得出 A2A2018100911008, 据此利用三角形的面积公式计算可得 【解答】解:由题意知 OA4n2n, 201845042, OA2017+11009, A2A2018100911
15、008, 则OA2A2018的面积是11008504m2, 故选:A 【点评】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为 4 的倍 数时对应长度即为下标的一半,据此可得 6 (3 分)如图,直角三角形 DEF 中,DFE90,在直角三角形外面作正方形 ABDE, 第 9 页(共 23 页) CDFI,EFGH 的面积分别为 25,9,16,AEH,BDC,GFI 的面积分别为 S1,S2, S3,则 S1+S2+S3( ) A18 B21 C23.5 D26 【分析】 过点 A 作 AMEH, 交 HE 的延长线于点 M, 由正方形的性质可得 AEDE5, EFFH4,DF
16、FI3,AEDHEF90MEF,由“AAS”可证AME DFE,可得 AMDF,即可得 S1SDEF,同理可得 S2SDEF,S3SDEF,即可求解 【解答】解:如图,过点 A 作 AMEH,交 HE 的延长线于点 M, 正方形 ABDE,CDFI,EFGH 的面积分别为 25,9,16, AEDE5,EFFH4,DFFI3,AEDHEF90MEF AEMDEF,且AMEDFE,AEDE AMEDFE(AAS) AMDF S1EHAM,SDEFEFDF S1SDEF, 同理可得:S2SDEF,S3SDEF, S1+S2+S33SDEF34318 故选:A 【点评】本题考查了正方形的性质,全等三
17、角形的判定和性质,证明 S1S2S3SDEF 第 10 页(共 23 页) 是本题的关键 二、填空题(本大题共二、填空题(本大题共 6 小题,每小题小题,每小题 3 分,共分,共 18 分)分) 7 (3 分)实数的平方根是 【分析】根据平方根的定义即可得到结果 【解答】解:()2 实数的平方根是 故答案是: 【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键 8 (3 分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分 别是(4,1)和(2,3) ,那么“卒”的坐标为 (1,0) 【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒
18、” 的坐标 【解答】解:如图所示, “卒”的坐标为(1,0) , 故答案为: (1,0) 【点评】此题主要考查了坐标确定位置,关键是正确确定原点位置 9 (3 分)如图,某自动感应门的正上方装着一个感应器,离地 2.5 米,当物体进入感应器 的感应范围内时,感应门就会自动打开一个身高 1.6 米的学生正对门,缓慢走到离门 第 11 页(共 23 页) 1.2 米的地方时,感应门才自动打开,则感应器的最大感应距离是 1.5 米 【分析】过点 B 作 BCAD 于点 C,构造 RtABC,利用勾股定理求得 AB 的长度即可 【解答】解:如图,过点 B 作 BCAD 于点 C, 依题意知,BECD1
19、.6 米,EDBC1.2 米,AD2.5 米,则 ACADCDADBE 2.51.60.9(米) 在 RtABC 中,由勾股定理得到:AB1.5(米) 故答案是:1.5 【点评】考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾 股定理求得线段 AB 的长度 10 (3 分)已知两个连续整数 a,b 满足 ab,则 a+b 5 【分析】先估算出的范围,求出 a、b 的值,即可求出答案 【解答】解:23, 32, a3,b2, a+b5, 故答案为:5 【点评】本题考查了估算无理数的大小的应用,能估算出的范围是解此题的关键 11 (3 分)如图,在ABC 中,BAC90,ABA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 江西省 景德镇市 年级 期中 数学试卷
链接地址:https://www.77wenku.com/p-131794.html