2020年上海市浦东新区中考数学模拟试卷含解析版
《2020年上海市浦东新区中考数学模拟试卷含解析版》由会员分享,可在线阅读,更多相关《2020年上海市浦东新区中考数学模拟试卷含解析版(17页珍藏版)》请在七七文库上搜索。
1、绝密启用前绝密启用前 2020 年上海市浦东新区中考数学模拟年上海市浦东新区中考数学模拟试卷试卷 注意事项: 1答题前填写好自己的姓名、班级、考号等信息 2请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用 2B 铅笔填涂 一、选择题:(本大题共一、选择题:(本大题共 6 题,每题题,每题 4 分,满分分,满分 24 分)【下列各题的四个选项中,有且只分)【下列各题的四个选项中,有且只 有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1下列各数不是 4 的因数是( ) A1 B2 C3 D4 2如果分式有
2、意义,则 x 与 y 必须满足( ) Axy Bxy Cxy Dxy 3直线 y2x7 不经过( ) A第一象限 B第二象限 C第三象限 D第四象限 4某运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分 别为 0.85、1.23、5.01、3.46,那么这四位运动员中,发挥较稳定的是( ) A甲 B乙 C丙 D丁 5在线段、等边三角形、等腰梯形、平行四边形中,一定是轴对称图形的个数有( ) A1 个 B2 个 C3 个 D4 个 6已知在四边形 ABCD 中,ADBC,对角线 AC 与 BD 相交于点 O,AOCO,如果添加 下列一个条件后,就能判定这个四边形是菱形的
3、是( ) ABODO BABBC CABCD DABCD 二、填空题:(本大题共二、填空题:(本大题共 12 题,每题题,每题 4 分,满分分,满分 48 分)分) 7的相反数是 8分解因式:a22ab+b24 9已知函数 f(x),那么 f(2) 10如果关于 x 的方程 x2+2x+m0 有两个实数根,那么 m 的取值范围是 11已知一个正多边形的中心角为 30 度,边长为 x 厘米(x0),周长为 y 厘米,那么 y 关于 x 的函数解析式为 12从 1、2、3 这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数, 这个数恰好是偶数的概率是 13 在四边形ABCD中, 向量
4、、 满足, 那么线段AB与CD的位置关系是 14某校有 560 名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全 体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统 计图可以估计这个学校全体学生每天做作业时间不少于 2 小时的人数约为 名 15已知一个角的度数为 50 度,那么这个角的补角等于 16 已知梯形的上底长为 5 厘米, 下底长为 9 厘米, 那么这个梯形的中位线长等于 厘 米 17如图,已知在ABC 中,AB3,AC2,A45o,将这个三角形绕点 B 旋转,使点 A 落在射线 AC 上的点 A1处,点 C 落在点 C1处,那么 AC1 1
5、8定义:如果 P 是圆 O 所在平面内的一点,Q 是射线 OP 上一点,且线段 OP、OQ 的比 例中项等于圆 O 的半径,那么我们称点 P 与点 Q 为这个圆的一对反演点已知点 M、N 为圆 O 的一对反演点,且点 M、N 到圆心 O 的距离分别为 4 和 9,那么圆 O 上任意一点 到点 M、N 的距离之比 三、解答题:(本大题共三、解答题:(本大题共 7 题,满分题,满分 78 分)分) 19(10 分)计算:(3)09+|2| 20(10 分)解不等式组:,并写出这个不等式组的自然数解 21 (10 分) 已知: 如图, 在平面直角坐标系 xOy 中, 双曲线 y经过第一象限内的点 A
6、, 延长 OA 到点 B,使得 BA2AO,过点 B 作 BHx 轴,垂足为点 H,交双曲线于点 C, 点 B 的横坐标为 6 求:(1)点 A 的坐标; (2)将直线 AB 平移,使其经过点 C,求平移后直线的表达式 22 (10 分)如图 1,一辆吊车工作时的吊臂 AB 最长为 20 米,吊臂与水平线的夹角ABC 最大为 70,旋转中心点 B 离地面的距离 BD 为 2 米 (1)如图 2,求这辆吊车工作时点 A 离地面的最大距离 AH(参考数据:sin700.94, cos700.34,tan702.75); (2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到 40 千米远的某工地,
7、因此 王师傅以每小时比平时快 20 千米的速度匀速行驶,结果提前 20 分钟到达,求这次王师 傅所开的吊车速度 23 (12 分)已知:如图,在直角梯形 ABCD 中,ADBC,DCBC,ABAD,AMBD, 垂足为点 M,连接 CM 并延长,交线段 AB 于点 N 求证:(1)ABDBCM; (2)BCBNCNDM 24 (12 分)已知抛物线 y+bx+c 经过点 M(3,4),与 x 轴相交于点 A(3,0) 和点 B,与 y 轴相交于点 C (1)求这条抛物线的表达式; (2)如果 P 是这条抛物线对称轴上一点,PCBC,求点 P 的坐标; (3)在第(2)小题的条件下,当点 P 在
8、x 轴上方时,求PCB 的正弦值 25(14 分)已知 AB 是圆 O 的一条弦,P 是圆 O 上一点,过点 O 作 MNAP,垂足为点 M,并交射线 AB 于点 N,圆 O 的半径为 5,AB8 (1)当 P 是优弧的中点时(如图),求弦 AP 的长; (2)当点 N 与点 B 重合时,试判断:以圆 O 为圆心,为半径的圆与直线 AP 的位置关 系,并说明理由; (3)当BNOBON,且圆 N 与圆 O 相切时,求圆 N 半径的长 参考答案与试题解析参考答案与试题解析 一、选择题:(本大题共一、选择题:(本大题共 6 题,每题题,每题 4 分,满分分,满分 24 分)【下列各题的四个选项中,
9、有且只分)【下列各题的四个选项中,有且只 有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1【分析】根据求一个数的因数的方法,判断出所给的各数不是 4 的因数是哪些即可 【解答】解:4 的因数有:1、2、4, 各数不是 4 的因数是 3 故选:C 【点评】此题主要考查了求一个数因数的方法,要熟练掌握,应有顺序的写,做到不重 不漏 2【分析】根据分式有意义的条件是 xy0,可得 xy0,进而可得答案 【解答】解:由题意得:xy0, 即:xy, 故选:D 【点评】此题主要考查了分式有意义的条件,关键是掌握分式分母不为
10、零 3【分析】根据题目中的函数解析式和一次函数的性质可以解答本题 【解答】解:直线 y2x1,k20,b1, 该直线经过第一、三、四象限,不经过第二象限, 故选:B 【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质 解答 4【分析】根据方差的意义求解可得 【解答】解:由题意知甲的方差最小,成绩最稳定, 故选:A 【点评】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表 明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组 数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定 5【分析】根据轴对称图形的概念对各图形分
11、析判断即可得解 【解答】解:线段是轴对称图形, 等边三角形是轴对称图形, 等腰梯形是轴对称图形, 平行四边形不是轴对称图形, 综上所述,一定是轴对称图形的是共 3 个 故选:C 【点评】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分 折叠后可重合 6 【分析】根据平行线的性质得到ADBCBD,根据全等三角形的性质得到 ADBC, 于是得到四边形 ABCD 是平行四边形,根据菱形的判定定理即可得到即可 【解答】解:ADBC, ADBCBD, 在ADO 与CBO 中, ADOCBO(AAS), ADCB, 四边形 ABCD 是平行四边形, ABBC 四边形 ABCD 是菱形;故
12、 B 正确; 故选:B 【点评】本题考查了菱形的判定,全等三角形的判定与性质,熟练掌握菱形的判定定理 是解题的关键, 二、填空题:(本大题共二、填空题:(本大题共 12 题,每题题,每题 4 分,满分分,满分 48 分)分) 7【分析】根据只有符号不同的两个数叫做互为相反数可得答案 【解答】解:的相反数是, 故答案为: 【点评】此题主要考查了相反数,关键是掌握相反数定义 8【分析】首先将前三项分组进而利用完全平方公式和平方差公式分解因式得出即可 【解答】解:a22ab+b24 (ab)24 (ab+2)(ab2) 故答案为:(ab+2)(ab2) 【点评】此题主要考查了分组分解法因式分解,正确
13、分组得出是解题关键 9【分析】根据已知直接将 x2 代入求出答案 【解答】解:f(x), f(2)2 故答案为:2 【点评】此题主要考查了函数值,正确将已知数据代入是解题关键,本题属于基础题 10【分析】若一元二次方程有两个实数根,则根的判别式b24ac0,建立关于 m 的不等式,求出 m 的取值范围 【解答】解:方程有两个实数根, b24ac224m44m0, 解得:m1 故答案为:m1 【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式的关系: (1)0方程有两个不相等的实数根; (2)0方程有两个相等的实数根; (3)0方程没有实数根 11【分析】由正多边形的中心角的度数,根据
14、圆心角定理求出正多边形的边数,即可得出 结果 【解答】解:正多边形的中心角为 30 度, 12, 正多边形为正十二边形, 设边长为 x 厘米(x0),周长为 y 厘米,则 y 关于 x 的函数解析式为:y12x; 故答案为:y12x 【点评】本题考查了正多边形和圆、圆心角定理、函数关系式等知识,熟练掌握由正多 边形的中心角求正多边形的边数是关键 12【分析】列举出所有情况,看末位是 2 的情况占所有情况的多少即可 【解答】解: 共有 6 种情况,是偶数的有 2 种情况,所以组成的两位数是偶数的概率为, 故答案为: 【点评】此题主要考查了树状图法求概率,如果一个事件有 n 种可能,而且这些事件的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 上海市 浦东新区 中考 数学模拟 试卷 解析
链接地址:https://www.77wenku.com/p-132212.html