知识点21二次函数在实际生活中应用2019中考真题分类汇编
《知识点21二次函数在实际生活中应用2019中考真题分类汇编》由会员分享,可在线阅读,更多相关《知识点21二次函数在实际生活中应用2019中考真题分类汇编(19页珍藏版)》请在七七文库上搜索。
1、 一、选择题一、选择题 9 (2019山西)山西)北中环桥是省城太原的一座跨汾河大桥(如图 1),它由五个高度不同,跨径也不同的抛物线型钢拱 通过吊杆,拉索与主梁相连.最高的钢拱如图 2 所示,此钢拱(近似看成二次函数的图象抛物线)在同一竖直平面 内,与拱脚所在的水平面相交于 A,B 两点,拱高为 78 米(即最高点 O 到 AB 的距离为 78 米),跨径为 90 米,(即 AB 90 米),以最高点 O 为坐标原点,以平行于 AB 的直线为 x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式 为( ) A.y 26 675 x2 B.y 26 675 x2 C.y 13 1350 x2
2、 D.y 13 1350 x2 第 9 题图 【答案】【答案】B 【解析】【解析】设二次函数表达式为 yax2,由题可知,点 A 坐标为(45,78),代入表达式可得:78a(45)2,解得 a 26 675 ,二次函数表达式为 y 26 675 x2,故选 B. 三、解答题三、解答题 22 (2019 年浙江省绍兴市,第年浙江省绍兴市,第 22 题,题,12 分分 ).有一块形状如图的五边形余料 ABCDE,AB=AE=6,BC=5, A=B=90 ,C=135 ,E90 .要在这块余料中截取一块矩形材料,其中一边在 AE 上,并使所截矩形的 面积尽可能大. (1)若所截矩形材料的一条边是
3、BC 或 AE,求矩形材料的面积; (2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理 由. 【解题过程】【解题过程】 24 (2019嘉兴)嘉兴)某农作物的生长率p与温度t()有如下关系:如图 1,当 10t25 时可近似用函数p t刻画;当 25t37 时可近似用函数p(th) 2+0.4 刻画 (1)求h的值 (2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系: 生长率p 0.2 0.25 0.3 0.35 提前上市的天数m(天) 0 5 10 15 请运用已学的知识,求m关于p的函数表达式; 请用含t的代数式表示m (3
4、)天气寒冷,大棚加温可改变农作物生长速度在(2)的条件下,原计划大棚恒温 20时,每天的成本 为 200 元, 该作物 30 天后上市时, 根据市场调查: 每提前一天上市售出 (一次售完) , 销售额可增加 600 元 因 此给大棚继续加温,加温后每天成本w(元)与大棚温度t()之间的关系如图 2问提前上市多少天时增 加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用) 【解题过程】 (【解题过程】 (1)把()把(25,0.3)的坐标代入)的坐标代入 2 1 ()0.4 160 pth ,得h=29 或h=21. h25,h=29. (2)由表格可知)由表格可知 m 是是 p 的一
5、次函数,的一次函数,m=100p-20. 当当1025t 时,p= 11 505 t ,m= 11 100()20 505 t =2t-40. 当当2537t 时, 2 1 (29)0.4 160 pt . m= 2 1 100(29)0.4)20 160 t= 2 5 (29)20 8 t (3) () (I)当)当2025t 时,由(20,200) , (25,300) ,得20200wt 增加利润为增加利润为 600m+20030-w(30-m)= 2 406004000tt. 当当 t=25 时,增加利润的最大值为时,增加利润的最大值为 6000 元元. (II)当)当2537t 时,
6、300w. 增加利润为增加利润为 600m+20030-w(30-m)= 2 5 900 () (29)15000 8 t = 2 1125 (29)15000 2 t 当当 t=29 时,增加利润的最大值为时,增加利润的最大值为 15000 元元. 综上所述,当综上所述,当 t=29 时,提前上市时,提前上市 20 天,增加利润的最大值为天,增加利润的最大值为 15000 元元. 22 (2019山东省青岛市,22,10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售 量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量y与销售
7、单价x之间的函数关系式; (2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利 润w(元)最大?最大利润是多少? (3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件? 【解题过程】解: (1)设y与销售单价x之间的函数关系式为:ykxb, 将点(30,100)、(45,70)代入一次函数表达式得: 10030 7045 kb kb , 解得: 2 160 k b , 故函数的表达式为:2160yx ; (2)由题意得: 2 (30)( 2160)2(55)1250wxxx, 20 ,故当55x 时,w随x的增大而
8、增大,而3050x剟, 当50x 时,w由最大值,此时,1200w , 故销售单价定为 50 元时,该超市每天的利润最大,最大利润 1200 元; (3)由题意得:(30)( 2160) 800xx, 解得:70x, 每天的销售量2160 20yx , 每天的销售量最少应为 20 件 22 (2019武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量 y(件)是售价 x(元/件)的一 次函数,其售价、周销售量、周销售利润 w(元)的三组对应值如下表: 售价 x(元/件) 50 60 80 周销售量 y(件) 100 80 40 周销售利润 w(元) 1000 1600 1600 注
9、:周销售利润周销售量 (售价进价) (1) 求 y 关于 x 的函数解析式(不要求写出自变量的取值范围) 该商品进价是_元/件;当售价是_元/件时,周销售利润最大,最大利润是_元 (2) 由于某种原因,该商品进价提高了 m 元/件(m0) ,物价部门规定该商品售价不得超过 65 元/件,该商店在今 后的销售中,周销售量与售价仍然满足(1)中的函数关系若周销售最大利润是 1400 元,求 m 的值 【解题过程】 (【解题过程】 (1)设)设 y 与与 x 的函数关系式为的函数关系式为 ykxb,依题意有,依题意有, 50100 6080 kb kb ,解得,解得,k2,b200,y 与与 x 的
10、函数关系式是的函数关系式是 y2x200; (2)将售价 50,周销售量 100,周销售利润 1000,带入周销售利润周销售量 (售价进价)得到,1000100 (50进价) ,即进价为 40 元/件;周销售利润 w(x40)y(x40) (2x200)2(x70)21800,故 当售价是 70 元/件时,周销售利润最大,最大利润是 1800 元,故答案为 40,70,1800; ( 3 ) 依 题 意 有 , w ( 2x 200 )( x 40 m ) 2x2 ( 2m 280 ) x 8000 200m 2 2 1401 2601800 22 m xmm m0,对称轴 140 =70 2
11、 m x , 20,抛物线开口向下, x65,w 随 x 的增大而增大, 当 x65 时,w 有最大值(2 65200) (6540m) , (2 65200) (6540m)1400, m5 24 (2019黄冈黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户 种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价 y(万元)与产量 x(吨)之间的 关系如图所示(0x100),已知草莓的产销投人总成本 p(万元)与产量 x(吨)之间满足 Px1. (1)直接写出草莓销售单价 y(万元)与产量 x(吨)之间的函数关系式; (2)求该合
12、作社所获利润 w(万元)与产量 x(吨)之间的函数关系式; (3)为提高农民种植草莓的积极性,合作社决定按 0.3 万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利 润 w不低于 55 万元,产量至少要达到多少吨? 【解题过程】【解题过程】 1. (2019衢州市衢州市)某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为80间,经市场调 查表明,该宾馆每间标准房的价格在170240元之间(含170元,240元)浮动时,每天入住的房间数(间) 与每间标准房的价格x(元)的数据如下表: x(元) 190 200 210 220 y(间) 65 60 55 50 (1)根据所给
13、数据在坐标系中描出相应的点,并画出图象。 (2)求y关于x的函数表达式,并写出自变量x的取值范围。 (3)设客房的日营业额为w(元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日答业额 最大?最大为多少元? 【思路分析】【思路分析】(1)在坐标系中描出各点,连线即可; (2)判断函数类型,由两点法求一次函数解析式,并根据题意写出取值范围; (3)根据日营业额为 w=入住的房间数每间标准房的价格列出函数关系式求解。 【解题过程】【解题过程】(1)如图所示。2分 (2)解:设y=kx+6(k0),把(200,60)和(220,50)代入, 得 20060 22050 kb kb ,解
14、得 1 2 160 k b 4分 y=- 1 2 x+160(170x240)。6分 (3)w=xy=x(- 1 2 x+160)=- 1 2 x2+160x.8分 对称轴为直线x=- 2 b a =160, a=- 1 2 0,在170x240范围内,w随x的增大而减小。 故当x-170时,w有最大值,最大值为12750元。10分 【知识点】【知识点】一次函数一次函数 二次函数的性质二次函数的性质 待定系数法求解析式待定系数法求解析式 2. (2019潍坊市)潍坊市)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场,与去年相 比,今年这种水果的产量增加了 1000 千克,
15、每千克的平均批发价比去年降低了 1 元,批发销售总额比去年增加 了 20% (1)已知去年这种水果批发销售总额为 10 万元,求这种水果今年每千克的平均批发价是多少元? (2)某水果店从果农处直接批发,专营这种水果调查发现,若每千克的平均销售价为 41 元,则每天可售出 300 千克,若每千克的平均销售价每降低 3 元,每天可多卖出 180 千克设水果店一天的利润为 w 元,当每千克 的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计 ) 【思路分析】【思路分析】 (1)设今年这种水果每千克的平均批发价为 x 元,则去年的批发价为(x+1)元,根据“
16、今年比 去年这种水果的产量增加了 1000 千克”列方程求解; (2)设每千克的平均销售价为 m 元,求出这种水果的销售 量,根据“利润=(售价进价)销售量”列出函数关系求最值 【解题过程】【解题过程】 (1)设今年这种水果每千克的平均批发价为 x 元,由题意,得: 100000 1+20%100000 1000 1xx () 解之,得:x1=24,x2=5(舍去) 答:今年这种水果每千克的平均批发价为 24 元 (2)设每千克的平均销售价为 m 元,由题意得: 41 (24)(300 180) 3 m wm 2 60(35)7260m 600 当 x=35 时,w 取得最大值为 7260 答
17、:当每千克平均销售价为 35 元时,一天的利润最大,最大利润是 7260 元 【知识点】分式方程的应用,二次函数的应用【知识点】分式方程的应用,二次函数的应用 一、选择题一、选择题 14. (2019临沂)从地面竖直向上抛出一小球,小球的高度 h(单位:m)与小球运动时间 t(单位:s)之间 的函数关系如图所示下列结论: 小球在空中经过的路程是 40m; 小球抛出 3 秒后,速度越来越快; 小球抛出 3 秒时速度为 0; 小球的高度 h30m 时,t1.5s 其中正确的是( ) A B C D 【答案】【答案】D 【解析】【解析】由图象知小球在空中达到的最大高度是 40m;故错误; 小球抛出
18、3 秒后,速度越来越快;故正确; 小球抛出 3 秒时达到最高点即速度为 0;故正确; 设函数解析式为:ha(t3)2+40, 把 O(0,0)代入得 0a(03)2+40,解得 a= 40 9 , 函数解析式为 h= 40 9 (t3)2+40, 把 h30 代入解析式得,30= 40 9 (t3)2+40, 解得:t4.5 或 t1.5, 小球的高度 h30m 时,t1.5s 或 4.5s,故错误,故选 D 【知识点】【知识点】二次函数的实际应用 7. (2019连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中 120C若新建墙BC与CD 总长为12m,则该梯形储料场ABCD的
19、最大面积是( ) A 2 18m B 2 18 3m C 2 24 3m D 2 45 3 2 m 【答案】C 【解析】解:如图,过点C作CE AB 于E, 则四边形ADCE为矩形,CD AEx , 90DCECEB , 则 30BCEBCDDCE ,12BCx , 在Rt CBE 中, 90CEB, 11 6 22 BEBCx , 3 36 3 2 ADCEBEx , 11 66 22 ABAEBExxx , 梯形 SABCD面积 1 () 2 CDAB CE 113 (6) (6 3) 222 xxx 2 3 3 3 318 3 8 xx , 2 3 3 (4)24 3 88 x 当 4x
20、 时, 24 3S 最大 即CD长为4m时,使梯形储料场ABCD的面积最大为 2 24 3m , 故选 C 【知识点】梯形的性质;矩形的性质;含30角的直角三角形的性质;勾股定理;二次函数的最值. 二、填空题二、填空题 15.(2019广安)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高 度y(米)与水平距离x(米)之间的关系为 2 125 1233 yxx , 由此可知该生此次实心球训练的成绩为米 【答案】10 【解析】当0y 时, 2 125 0 1233 yxx ,解得,2x (舍去) ,10x 故答案为:10 【知识点】【知识点】二次函数的应用 三、
21、解答题三、解答题 26.(2019 宿迁)超市销售某种儿童玩具,如果每件利润为 40 元(市场管理部门规定,该种玩具每件利润不 能超过 60 元) ,每天可售出 50 件根据市场调查发现,销售单价每增加 2 元,每天销售量会减少 1 件设 销售单价增加 x 元,每天售出 y 件 (1)请写出 y 与 x 之间的函数表达式; (2)当 x 为多少时,超市每天销售这种玩具可获利润 2250 元? (3)设超市每天销售这种玩具可获利 w 元,当 x 为多少时 w 最大,最大值是多少? 解: (1)根据题意得,y= 1 2x+50; (2)根据题意得, (40+x) ( 1 2x+50)2250, 解
22、得:x150,x210, 每件利润不能超过 60 元, x10, 答:当 x 为 10 时,超市每天销售这种玩具可获利润 2250 元; (3)根据题意得,w(40+x) ( 1 2x+50)= 1 2x2+30x+2000= 1 2(x30)2+2450, a= 1 2 0, 当 x30 时,w 随 x 的增大而增大, 当 x20 时,w 增大2400, 答:当 x 为 20 时 w 最大,最大值是 2400 元 【知识点】一元二次方程的应用;二次函数的应用 24.(2019黔三州黔三州)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加 工包装土特产销售给游客,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 21 二次 函数 实际 生活 应用 2019 中考 分类 汇编
链接地址:https://www.77wenku.com/p-132457.html