高考数学讲义推理与证明.知识框架
《高考数学讲义推理与证明.知识框架》由会员分享,可在线阅读,更多相关《高考数学讲义推理与证明.知识框架(4页珍藏版)》请在七七文库上搜索。
1、 1 合情推理演 绎证明与数 学归纳法 要求层 次 重难点 推理证明 A 掌握数学归纳法的证明步骤,熟练表达 数学归纳法证明过程.对数学归纳法的 认识不断深化.掌握数学归纳法的应用: 证恒等式;整除性的证明;探求 平面几何中的问题; 探求数列的通项; 不等式的证明. 直接证明与间接证明 A 数学归纳法 B 演绎推理 C 一、合情推理与演绎推理一、合情推理与演绎推理 1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理. 从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一 知识内容 高考要求 模块框架 推理与证明 2 部分是由已知推出的判断,叫结论. 2
2、、合情推理: 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提 出的推理叫合情推理。 合情推理可分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部 对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之, 归纳推理是由部分到整体、由个别到一般的推理 (2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已 知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊 到特殊的推理。 3.演绎推理: 从一般性的原理出发, 推出某个特殊情况下的结论的推理叫演绎推理, 简言之, 演绎推理是由一般到特殊
3、的推理。 三段论是演绎推理的一般模式, 它包括: (1) 大前提-已知的一般原理; (2)小前提-所研究的特殊情况; (3)结论根 据一般原理,对特殊情况作出的判断。 4.演绎法: 如果一般的命题是已经证明了的,或者是未经证明而作为真理用的,那么以这 个一般命题推出的每一个特殊命题也就是正确的 象这样由一般到特殊的推理 方法,通常称为演绎推理或者演绎法 5.归纳法: 先考察一些特殊的事例,然后分析它们共同具有的特征,作出一般的结论.象 这样由特殊到一般的推理方法通常称为归纳推理,或者归纳法.归纳法又分为 完全归纳法和不完全归纳法两种. (1)由一些特殊事例推出一般结论的推理方法 新疆新疆 源头
4、学子小屋源头学子小屋 特级教师特级教师 王新敞王新敞 wxckt wxckt 王新敞王新敞 特级教师特级教师 源头学子小屋源头学子小屋 新疆新疆特点:特殊一般. (2)不完全归纳法: 从一个或几个(但不是全部)特殊情况作出一般性结论的归纳推理.不完全归纳 法又叫做普通归纳法.这种归纳法是以一定数量的事实作基础,进行分析研究, 找出规律.但是,由于不完全归纳法是以有限数量的事实作为基础而得出的一 般性结论.这样作出的结论有时可能不正确.例如,在数列 2 41 n ann中,当 项数为 1,2,3,38,39 时,数列的项分别为 43,47,53,1601, 这些数都是质数, 如果由此得出 “数列
5、 n a(其中 2 41 n ann)的所有项都是 质数”的结论,那么就不对了.因为当 n=40 时,则 22 40404141 n a ,可 以看出, 40 a的值不是质数了,而是合数.虽然不完全归纳法的结论有时可能不 3 正确,但它仍是一种重要的推理方法. (3)完全归纳法: 作为结论依据的观察,如果包含了规律所涉及的一切现象,这种归纳法叫做完 全归纳法.由完全归纳所得出的结论是可靠的.完全归纳法是把出现的特殊情况 完全无遗的一一加以研究,从而得出一般性的结论的推理方法.完全归纳法又 叫做枚举归纳法.应用完全归纳法,在考虑各种情况时,应做到不重不漏. 完全归纳法是一种在研究了事物的所有(有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 讲义 推理 证明
链接地址:https://www.77wenku.com/p-132853.html