高考数学讲义随机变量及其分布列.知识框架
《高考数学讲义随机变量及其分布列.知识框架》由会员分享,可在线阅读,更多相关《高考数学讲义随机变量及其分布列.知识框架(4页珍藏版)》请在七七文库上搜索。
1、 1 随机变量及 其分布 要求层次 重难点 取有限值的离散型 随机变量及其分布 列 C 理解取有限个值的离散型随机变量及 其分布列的概念,了解分布列对于刻画 随机现象的重要性 理解超几何分布及其导出过程,并能 进行简单的应用 超几何分布 A 二项分布 及其应用 要求层次 重难点 条件概率 A 了解条件概率和两个事件相互独立的概 念,理解 n 次独立重复试验的模型及二 项分布, 并能解决一些简单的实际问题 事件的独立性 A n 次独立重复试验与 二项分布 B 离散型随 机变量的 要求层次 重难点 取有限值的离散型随B 理解取有限个值的离散型随机变量均 高考要求 模块框架 随机变量及其分布列 2
2、均值与方 差 机变量的均值、方差 值、方差的概念,能计算简单离散型随 机变量的均值、方差,并能解决一些实 际问题 正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布 曲线的特点及曲线所表示的意义 1 离散型随机变量及其分布列 离散型随机变量 如果在试验中, 试验可能出现的结果可以用一个变量X来表示, 并且X是随着试验的结 果的不同而变化的,我们把这样的变量X叫做一个随机变量随机变量常用大写字母 ,X Y表示 如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量 离散型随机变量的分布列 将离散型随机变量X所有可能的取值 i x与该取值对应的概率 i p
3、(1, 2,)in列表表示: X 1 x 2 x i x n x P 1 p 2 p i p n p 我们称这个表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列 2几类典型的随机分布 两点分布两点分布 如果随机变量X的分布列为 X 1 0 P p q 其中01p,1qp ,则称离散型随机变量X服从参数为p的二点分布 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率 为80%,随机变量X为任意抽取一件产品得到的结果,则X的分布列满足二点分布 X 1 0 P 0.8 0.2 两点分布又称01分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分
4、 布又称为伯努利分布 超几何分布超几何分布 一般地, 设有总数为N件的两类物品, 其中一类有M件, 从所有物品中任取n件()nN, 这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率为 CC () C mn m MN M n N P Xm (0ml,l为n和M中较小的一个) 我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N, M,n的超几何分布在超几何分布中,只要知道N,M和n,就可以根据公式求出X 取不同值时的概率()P Xm,从而列出X的分布列 二项分布二项分布 知识内容 3 1独立重复试验 如果每次试验,只考虑有两个可能的结果A及A,并且事件A发
5、生的概率相同在相同 的条件下,重复地做n次试验,各次试验的结果相互独立,那么一般就称它们为n次独 立 重 复 试 验 n次 独 立 重 复 试 验 中 , 事 件A恰 好 发 生k次 的 概 率 为 ( )C(1) kkn k nn P kpp (0,1, 2,)kn 2二项分布 若将事件A发生的次数设为X,事件A不发生的概率为1qp ,那么在n次独立重复 试验中,事件A恰好发生k次的概率是()Ck kn k n P Xkp q ,其中0, 1, 2,kn于 是得到X的分布列 X 0 1 k n P 00 C n n p q 111 C n n p q Ck kn k n p q 0 Cn n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 讲义 随机变量 及其 分布
链接地址:https://www.77wenku.com/p-132863.html