2012~2018概率统计文科 学生版
《2012~2018概率统计文科 学生版》由会员分享,可在线阅读,更多相关《2012~2018概率统计文科 学生版(100页珍藏版)》请在七七文库上搜索。
1、 20122018 概率统计概率统计 文科真题文科真题 目录目录 2018 高考真题 . 1 一选择题 . 1 二填空题 . 2 三解答题 . 3 2017 高考真题 . 9 一选择题 . 9 二填空题 . 10 三解答题 . 11 2016 高考真题 . 18 一选择题 . 18 二填空题 . 20 三解答题 . 21 2015 高考真题 . 29 一选择题 . 29 二填空题 . 32 三解答题 . 33 2014 高考真题 . 45 一选择题 . 45 二填空题 . 48 三解答题 . 50 2013 高考真题 . 66 一选择题 . 66 二填空题 . 69 三解答题 . 70 201
2、2 高考真题 . 85 一选择题 . 85 二填空题 . 87 三解答题 . 89 1 2018 高考真题高考真题 一选择题一选择题(共(共 6 小题)小题) 1 (2018新课标)某地区经过一年的新农村建设,农村的经济收入增加了一 倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地 区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是( ) A新农村建设后,种植收入减少 B新农村建设后,其他收入增加了一倍以上 C新农村建设后,养殖收入增加了一倍 D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2 (2018新课标)从 2 名男同学和
3、3 名女同学中任选 2 人参加社区服务,则 选中的 2 人都是女同学的概率为( ) A0.6 B0.5 C0.4 D0.3 3 (2018浙江)设 0p1,随机变量 的分布列是 0 1 2 P 1 2 1 2 2 则当 p 在(0,1)内增大时, ( ) AD()减小 BD()增大 CD()先减小后增大 DD()先增大后减小 2 4 (2018新课标)若某群体中的成员只用现金支付的概率为 0.45,既用现金 支付也用非现金支付的概率为 0.15,则不用现金支付的概率为( ) A0.3 B0.4 C0.6 D0.7 5 (2018上海) 九章算术中,称底面为矩形而有一侧棱垂直于底面的四棱锥 为阳
4、马,设 AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点 为顶点、以 AA1为底面矩形的一边,则这样的阳马的个数是( ) A4 B8 C12 D16 6 (2018全国)甲、乙、丙、丁、戊站成一排,甲不在两端的概率( ) A4 5 B3 5 C2 5 D1 5 二二填空题填空题(共(共 7 小题)小题) 7 (2018江苏)已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么 这 5 位裁判打出的分数的平均数为 8 (2018江苏)某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参 加活动,则恰好选中 2 名女生的概率为 9 (2018新课标)某公司有大量客户,
5、且不同年龄段客户对其服务的评价有 较大差异为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样 方法有简单随机抽样、 分层抽样和系统抽样, 则最合适的抽样方法是 10 (2018上海)有编号互不相同的五个砝码,其中 5 克、3 克、1 克砝码各一 个,2 克砝码两个,从中随机选取三个,则这三个砝码的总质量为 9 克的概率 是 (结果用最简分数表示) 3 三三解答题解答题(共(共 6 小题)小题) 11 (2018新课标)某家庭记录了未使用节水龙头 50 天的日用水量数据(单 位:m3)和使用了节水龙头 50 天的日用水量数据,得到频数分布表如下: 未使用节水龙头 50 天的日用水量频数分布
6、表 日用水量 0,0.1) 0.1, 0.2) 0.2, 0.3) 0.3, 0.4) 0.4, 0.5) 0.5, 0.6) 0.6, 0.7) 频数 1 3 2 4 9 26 5 使用了节水龙头 50 天的日用水量频数分布表 日用水量 0,0.1) 0.1,0.2) 0.2,0.3) 0.3,0.4) 0.4,0.5) 0.5,0.6) 频数 1 5 13 10 16 5 (1)作出使用了节水龙头 50 天的日用水量数据的频率分布直方图; (2)估计该家庭使用节水龙头后,日用水量小于 0.35m3的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算, 同一组
7、中的数据以这组数据所在区间中点的值作代表) 4 12(2018新课标) 如图是某地区 2000 年至 2016 年环境基础设施投资额 y (单 位:亿元)的折线图 为了预测该地区 2018 年的环境基础设施投资额,建立了 y 与时间变量 t 的两个 线性回归模型 根据2000年至2016年的数据 (时间变量t的值依次为1, 2, , 17)建立模型: =30.4+13.5t;根据 2010 年至 2016 年的数据(时间变量 t 的值依次为 1,2,7)建立模型: =99+17.5t (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预
8、测值更可靠?并说明理由 5 13 (2018江苏)设 nN*,对 1,2,n 的一个排列 i1i2in,如果当 st 时,有 isit,则称(is,it)是排列 i1i2in的一个逆序,排列 i1i2in的所有 逆序的总个数称为其逆序数例如:对 1,2,3 的一个排列 231,只有两个逆 序(2,1) , (3,1) ,则排列 231 的逆序数为 2记 fn(k)为 1,2,n 的 所有排列中逆序数为 k 的全部排列的个数 (1)求 f3(2) ,f4(2)的值; (2)求 fn(2) (n5)的表达式(用 n 表示) 6 14 (2018新课标)某工厂为提高生产效率,开展技术创新活动,提出了
9、完成 某项生产任务的两种新的生产方式为比较两种生产方式的效率,选取 40 名 工人,将他们随机分成两组,每组 20 人第一组工人用第一种生产方式,第 二组工人用第二种生产方式 根据工人完成生产任务的工作时间 (单位: min) 绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2) 求 40 名工人完成生产任务所需时间的中位数 m, 并将完成生产任务所需时 间超过 m 和不超过 m 的工人数填入下面的列联表: 超过 m 不超过 m 第一种生产方式 第二种生产方式 (3) 根据 (2) 中的列联表, 能否有 99%的把握认为两种生产方式的效率有差异? 附:K2= (
10、;)2 (:)(:)(:)(:), P(K2k) 0.050 0.010 0.001 k 3.841 6.635 10.828 7 15 (2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一 类 第二 类 第三类 第四类 第五类 第六 类 电影部数 140 50 300 200 800 510 好评率 0.4 0.2 0.15 0.25 0.2 0.1 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值 () 从电影公司收集的电影中随机选取 1 部,求这部电影是获得好评的第四类 电影的概率; ()随机选取 1 部电影,估计这部电影没有获得好评的概率;
11、()电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好 评率发生变化假设表格中只有两类电影的好评率数据发生变化,那么哪类 电影的好评率增加 0.1,哪类电影的好评率减少 0.1,使得获得好评的电影总 部数与样本中的电影总部数的比值达到最大?(只需写出结论) 8 16 (2018天津)己知某校甲、乙、丙三个年级的学生志愿者人数分别为 240, 160, 160 现采用分层抽样的方法从中抽取 7 名同学去某敬老院参加献爱心活动 ()应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? ()设抽出的 7 名同学分别用 A,B,C,D,E,F,G 表示,现从中随机抽取 2 名同学承担敬老
12、院的卫生工作 (i)试用所给字母列举出所有可能的抽取结果; (ii)设 M 为事件“抽取的 2 名同学来自同一年级”,求事件 M 发生的概率 9 2017 高考真题高考真题 一选择题一选择题(共(共 8 小题)小题) 1 (2017新课标)为评估一种农作物的种植效果,选了 n 块地作试验田这 n 块地的亩产量(单位:kg)分别是 x1,x2,xn,下面给出的指标中可以 用来评估这种农作物亩产量稳定程度的是( ) Ax1,x2,xn的平均数 Bx1,x2,xn的标准差 Cx1,x2,xn的最大值 Dx1,x2,xn的中位数 2 (2017新课标)如图,正方形 ABCD 内的图形来自中国古代的太极
13、图正 方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方 形内随机取一点,则此点取自黑色部分的概率是( ) A1 4 B 8 C1 2 D 4 3 (2017新课标)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成 绩 老师说: 你们四人中有 2 位优秀, 2 位良好, 我现在给甲看乙、 丙的成绩, 给乙看丙的成绩,给丁看甲的成绩看后甲对大家说:我还是不知道我的成 绩根据以上信息,则( ) A乙可以知道四人的成绩 B丁可以知道四人的成绩 C乙、丁可以知道对方的成绩 D乙、丁可以知道自己的成绩 4 (2017新课标)从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张
14、, 放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数 的概率为( ) A 1 10 B1 5 C 3 10 D2 5 5 (2017新课标)某城市为了解游客人数的变化规律,提高旅游服务质量, 收集并整理了 2014 年 1 月至 2016 年 12 月期间月接待游客量(单位:万人) 10 的数据,绘制了下面的折线图 根据该折线图,下列结论错误的是( ) A月接待游客量逐月增加 B年接待游客量逐年增加 C各年的月接待游客量高峰期大致在 7,8 月 D各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月,波动性更小,变化 比较平稳 6 (2017天津)有 5 支彩笔
15、(除颜色外无差别) ,颜色分别为红、黄、蓝、绿、 紫从这 5 支彩笔中任取 2 支不同颜色的彩笔,则取出的 2 支彩笔中含有红 色彩笔的概率为( ) A4 5 B3 5 C2 5 D1 5 7 (2017山东)如图所示的茎叶图记录了甲、乙两组各 5 名工人某日的产量数 据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则 x 和 y 的 值分别为( ) A3,5 B5,5 C3,7 D5,7 8 (2017全国)4 个数字 1 和 4 个数字 2 可以组成不同的 8 位数共有( ) A16 个 B70 个 C140 个 D256 个 二二填空题填空题(共(共 5 小题)小题) 9 (2
16、017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为 11 200,400,300,100 件为检验产品的质量,现用分层抽样的方法从以上所 有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取 件 10 (2017江苏)记函数 f(x)=6+2定义域为 D在区间4,5上随 机取一个数 x,则 xD 的概率是 11 (2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率 ,理论 上能把 的值计算到任意精度,祖冲之继承并发展了“割圆术”,将 的值精 确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单 位圆内接正六边形的面积 S6,S6= 12 (2
17、017浙江)从 6 男 2 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队 员 2 人组成 4 人服务队,要求服务队中至少有 1 名女生,共有 种不同 的选法 (用数字作答) 13 (2017上海)若排列数6 =654,则 m= 三三解答题解答题(共(共 7 小题)小题) 14 (2017新课标)为了监控某种零件的一条生产线的生产过程,检验员每隔 30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm) 下面是 检验员在一天内依次抽取的 16 个零件的尺寸: 抽取次 序 1 2 3 4 5 6 7 8 零件尺 寸 9.95 10.12 9.96 9.96 10.01 9
18、.92 9.98 10.04 抽取次 序 9 10 11 12 13 14 15 16 零件尺 寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得 = 1 16 16 =1 xi=9.97,s= 1 16 16 =1 ()2= 1 16( 16 =1 2 162) 0.212,16 =1 ( 8.5)218.439,16 =1 (xi) (i8.5)=2.78,其中 xi为抽取的第 i 个零件的尺寸,i=1,2,16 (1)求(xi,i) (i=1,2,16)的相关系数 r,并回答是否可以认为这一天生 12 产的零件尺寸不随生产过程的进行而系
19、统地变大或变小(若|r|0.25,则可 以认为零件的尺寸不随生产过程的进行而系统地变大或变小) (2)一天内抽检零件中,如果出现了尺寸在(3s,+3s)之外的零件,就认 为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过 程进行检查 ()从这一天抽检的结果看,是否需对当天的生产过程进行检查? ()在(3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生 产线当天生产的零件尺寸的均值与标准差 (精确到 0.01) 附: 样本 (xi, yi) (i=1, 2, , n) 的相关系数 r= =1 (;)(;) =1 (;)2 =1 (;)2 , 0.0080.09 15 (
20、2017新课标)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对 比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg) , 13 其频率分布直方图如下: (1)记 A 表示事件“旧养殖法的箱产量低于 50kg”,估计 A 的概率; (2)填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖 方法有关: 箱产量50kg 箱产量50kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较 附: P(K2K) 0.050 0.010 0.001 K 3.841 6.635 10.828 K2= (;)2 (:)(:)(:)(:)
21、 16 (2017新课标)某超市计划按月订购一种酸奶,每天进货量相同,进货成 本每瓶 4 元,售价每瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当 14 天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:) 有关 如果最高气温不低于 25, 需求量为 500 瓶; 如果最高气温位于区间20, 25) ,需求量为 300 瓶;如果最高气温低于 20,需求量为 200 瓶为了确定 六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频 数分布表: 最高气温 10,15) 15,20) 20,25) 25,30) 30,35) 35,40) 天数 2 16 36 2
22、5 7 4 以最高气温位于各区间的频率估计最高气温位于该区间的概率 (1)求六月份这种酸奶一天的需求量不超过 300 瓶的概率; (2)设六月份一天销售这种酸奶的利润为 Y(单位:元) ,当六月份这种酸奶一 天的进货量为 450 瓶时,写出 Y 的所有可能值,并估计 Y 大于零的概率 17 (2017天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放 广告已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、 15 收视人次如下表所示: 连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万) 甲 70 5 60 乙 60 5 25 已知电视台每周安排的甲、 乙连续剧的总
23、播放时间不多于 600 分钟, 广告的总播 放时间不少于 30 分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的 2 倍分别用 x,y 表示每周计划播出的甲、乙两套连续剧的次数 (I)用 x,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 18 (2017北京)某大学艺术专业 400 名学生参加某次测评,根据男女学生人数 比例,使用分层抽样的方法从中随机抽取了 100 名学生,记录他们的分数, 16 将数据分成 7 组:20,30) ,30,40) ,80,90,并整理得到如下频率分 布直方图: ()从总体的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20122018概率统计文科 学生版 2012 2018 概率 统计 文科 学生
链接地址:https://www.77wenku.com/p-133183.html