2018-2019学年吉林市吉林市八年级(上)期末数学试卷(含详细解答)
《2018-2019学年吉林市吉林市八年级(上)期末数学试卷(含详细解答)》由会员分享,可在线阅读,更多相关《2018-2019学年吉林市吉林市八年级(上)期末数学试卷(含详细解答)(25页珍藏版)》请在七七文库上搜索。
1、2018-2019 学年吉林市吉林市八年级(上)期末数学试卷一、单项选择题(每小题 2 分,共分,共 12 分)分) 1 (2 分)下列根式中是最简二次根式的是( ) A B C D 2 (2 分)某校为了丰富校园文化,举行初中生书法大赛,决赛设置了 6 个获奖名额,共有 11 名选手进入决赛,选手决赛得分均不相同若知道某位选手的决赛得分,要判断她能 否获奖,只需知道这 11 名选手得分的( ) A中位数 B平均数 C众数 D方差 3 (2 分)如图:四边形 ABCD 中,ADBC,下列条件中,不能判定 ABCD 为平行四边形 的是( ) AADBC BB+C180 CAC DABCD 4 (
2、2 分)如图,已知直线 yx+2 与 x 轴交于点 A,与 y 轴交于点 B,以点 A 为圆心,AB 长为半径画弧,交 x 轴于点 C,则点 C 的坐标为( ) A (1,0) B (2,0) C (22,0) D (22,0) 5 (2 分)如图,正方形 ABCD,点 E 在 AD 边上,已知 DE5,CE13,则阴影部分的面 积是( ) A114 B124 C134 D144 6 (2 分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达 B 点 第 2 页(共 25 页) 200m,结果他在水中实际游的路线 AC 为 520m,则该河流的宽度 AB 为( ) A480
3、 m B380 m C580 m D500 m 二、填空题(每小题二、填空题(每小题 3 分,共分,共 24 分)分) 7 (3 分) 8 (3 分)二次根式中的字母 a 的取值范围是 9 (3 分)某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为 80、90、82, 若三项成绩分别按 3:5:2,则她最后得分的平均分为 10 (3 分)甲、乙、丙三名同学在本学期几次数学测验中,三人的平均成绩都是 96 分同, 方差分别为:S甲 238,S 乙 214,S 丙 229,则三人中成绩最稳定的是 11 (3 分)如图,直线 ykx+b 交 x 轴于点 A(3,0) ,交 y 轴于点 B(
4、0,4) ,则不等式 x(kx+b)0 的解集为 12 (3 分)如图,ABC 中,ABAC,D 为 AB 中点,E 在 AC 上,且 BEAC,若 DE 5,AE8,则 BC 的长度为 13(3 分) 如图, 在菱形 ABCD 中, AB13, 对角线 AC10, 则菱形 ABCD 的面积为 14 (3 分)如图 1,平行四边形 ABCD,EFAD,交 AD,BC 于点 E,F,将平行四边形 第 3 页(共 25 页) ABCD 沿着 EF 按图 2 方式对折CD 的对应线段 CD交 AB 于点 O,若BOD的度 数为 n,则C 度 (用含有 n 的代数式表示) 三、解答题(每小题三、解答题
5、(每小题 5 分,共分,共 20 分)分) 15 (5 分)计算:3+6 16 (5 分)计算:+ 17 (5 分) 如图, 四边形 ABCD 是平行四边形, BEDF, 且分别交对角线 AC 于点 E, F 求 证:AFCE 18 (5 分)已知一次函数 ykx4,当 x2 时,y3 (1)求一次函数的解析式; (2)将该函数的图象向上平移 6 个单位,求平移后的图象与 x 轴交点的坐标 四、解答题(每小题四、解答题(每小题 7 分,共分,共 28 分)分) 19 (7 分)一写字楼发生火灾,消防车立即赶到距大楼 9 米的点 A 处升起云梯到发生火 灾的窗口点 C 处已知云梯 BC 长 15
6、 米,云梯底部 B 距地面 A 为 2.2 米问发生火灾的 窗口距地面有多少米? 20 (7 分)在化简式子 a+时,李东的解答过程如下: 解:a+ a+(第一步) 第 4 页(共 25 页) a+(1a) (第二步) 1(第三步) (1)李东的解答过程错在第 步; (2)若其中 a,给出正确的化简过程,并求值 21 (7 分)图、图、图均是 44 的正方形网格,每个小正方形的顶点称为格点, 每个小正方形的边长均为 1 (1)在图、图中,以格点为顶点,线段 AB 为一边,分别画一个平行四边形和菱形, 并直接写出它们的面积 (要求两个四边形不全等) (2)在图中,以点 A 为顶点,另外三个顶点也
7、在格点上,画一个面积最大的正方形, 并直接写出它的面积 22 (7 分)某校团委举办了一次“中国梦,我的梦”演讲比赛,满分 10 分,学生得分均为 整数,成绩达 6 分以上为合格,达到 9 分以上(含 9 分)为优秀这次竞赛中甲、乙两 组学生成绩分布的条形统计图如下 (1)补充完成下列的成绩统计分析表: 组别 平均分 中位数 方差 合格率 优秀率 甲 6.7 3.41 90% 20% 乙 7.5 80% 10% (2)小明同学说: “这次竞赛我得了 7 分,在我们小组中排名属中游略偏上! ”观察上表 可知,小明是 组学生; (填“甲”或“乙” ) (3)甲组同学说他们组的合格率、优秀率均高于乙
8、组,所以他们组的成绩好于乙组但 乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组请你给出两条支持乙 组同学观点的理由 第 5 页(共 25 页) 五、解答题(每小题五、解答题(每小题 8 分,共分,共 16 分)分) 23 (8 分)如图,在平面直角坐标系 xOy 中,一次函数 yx+n 的图象与正比例函数 y 2x 的图象交于点 A(m,4) (1)求 m、n 的值; (2)设一次函数 yx+n 的图象与 x 轴交于点 B,求AOB 的面积; (3)直接写出使函数 yx+n 的值小于函数 y2x 的值的自变量 x 的取值范围 24 (8 分)如图,在 RtABC 中,ACB90,点
9、D 是边 AB 上一点(点 D 不与点 A 重 合) ,点 E 是 AC 的中点,连结 DE 并延长至点 F,使 EFDE,连结 AF、CF (1)求证:四边形 ADCF 是平行四边形; (2)当点 D 是 AB 的中点时,若 AB4,求四边形 ADCF 的周长 六、解答题(每小题六、解答题(每小题 10 分,共分,共 20 分)分) 25 (10 分)一泳池清洗完毕后,用甲,乙两台不同的水泵同时向泳池内注水,一段时间后, 甲水泵因故障停了一段时间,乙水泵继续注水,甲水泵维修完继续按原来的速度注水, 从开始注水到结束共用 90 分钟,水池内水的总量为 y(m3)与放水时间 x(分钟)之间 的函
10、数图象如图所示 (1)甲水泵每分钟注水 m3; (2)求甲水泵维修完后,y 与 x 之间的函数关系式; 第 6 页(共 25 页) (3)求泳池中的水量是所需水量的一半时,注水的时间是多少分钟; (4)在整个注水过程中,哪台水泵注水较多,多多少立方米? 26 (10 分)定义:对多边形进行折叠,若翻折后的图形恰能拼成一个双层的四边形,这样 的四边形称为“双层四边形” (1)如图 1,将ABC 纸片沿中位线 EH 折叠,使点 A 落在 BC 边上的 D 处,再将纸片 分别沿 EF,HG 折叠,使点 B 和点 C 都与点 D 重合,得到双层四边形 EFGH,则双层四 边形 EFGH 为 形 (2)
11、ABCD 纸片按图 2 的方式折叠,折成双层四边形 EFGH 为矩形,若 EF5,EH 12,求 AD 的长 (3)如图 3,四边形 ABCD 纸片满足 ADBC,ADBC,ABBC,AB8,CD10把 该纸片折叠,得到双层四边形为正方形请你画出一种折叠的示意图,并直接写出此时 BC 的长 第 7 页(共 25 页) 2018-2019 学年吉林市吉林市八年级(上)期末数学试卷学年吉林市吉林市八年级(上)期末数学试卷 参考答案与试题解析参考答案与试题解析 一、单项选择题(每小题一、单项选择题(每小题 2 分,共分,共 12 分)分) 1 (2 分)下列根式中是最简二次根式的是( ) A B C
12、 D 【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式, 否则就不是 【解答】解:A、被开方数含能开得尽方的因数 4,故 A 不符合题意; B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 B 符合题意; C、被开方数含能开得尽方的因式 a2,故 C 不符合题意; D、被开方数含能开得尽方的因数 4,故 D 不符合题意, 故选:B 【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不 含分母;被开方数不含能开得尽方的因数或因式 2 (2 分)某校为了丰富校园文化,举行初中生书法大赛,决赛设置了 6 个获奖名额,共有 11 名选手进入
13、决赛,选手决赛得分均不相同若知道某位选手的决赛得分,要判断她能 否获奖,只需知道这 11 名选手得分的( ) A中位数 B平均数 C众数 D方差 【分析】由于比赛设置了 6 个获奖名额,共有 11 名选手参加,根据中位数的意义分析即 可 【解答】解:11 个不同的分数按从小到大排序后,中位数及中位数之后的共有 6 个数, 故只要知道自己的分数和中位数就可以知道是否获奖了 故选:A 【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义 3 (2 分)如图:四边形 ABCD 中,ADBC,下列条件中,不能判定 ABCD 为平行四边形 的是( ) 第 8 页(共 25 页)
14、AADBC BB+C180 CAC DABCD 【分析】根据平行四边形的判定方法一一判断即可 【解答】解:A、ADBC,ADBC, 四边形 ABCD 是平行四边形,故本选项正确,不符合题意; B、B+C180, ABCD,ADBC, 四边形 ABCD 是平行四边形,故本选项正确,不符合题意; C、ADBC, A+B180,D+C180, AC, BD, 四边形 ABCD 是平行四边形,故本选项正确,不符合题意; D、根据 ADBC,ABCD,不能推出四边形 ABCD 是平行四边形(可能是等腰梯形) ; 故选:D 【点评】本题考查平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定 方法
15、,属于中考常考题型 4 (2 分)如图,已知直线 yx+2 与 x 轴交于点 A,与 y 轴交于点 B,以点 A 为圆心,AB 长为半径画弧,交 x 轴于点 C,则点 C 的坐标为( ) A (1,0) B (2,0) C (22,0) D (22,0) 【分析】利用一次函数图象上点的坐标特征可求出点 A,B 的坐标,利用勾股定理求出 AB 的长度,再结合点 A 的坐标即可找出点 C 的坐标 【解答】解:当 x0 时,yx+22, 第 9 页(共 25 页) 点 B 的坐标为(0,2) ,OB2; 当 y0 时,x+20,解得:x2, 点 A 的坐标为(2,0) ,OA2 AB2, 点 C 的
16、坐标为(22,0) 故选:D 【点评】本题考查了一次函数图象上点的坐标特征以及勾股定理,利用一次函数图象上 点的坐标特征求出点 A,B 的坐标是解题的关键 5 (2 分)如图,正方形 ABCD,点 E 在 AD 边上,已知 DE5,CE13,则阴影部分的面 积是( ) A114 B124 C134 D144 【分析】由正方形的性质得出 BCADCD,D90,ADBC,由勾股定理得出 BCADCD12,得出 AEADDE7,由梯形面积公式即可得出答案 【解答】解:四边形 ABCD 是正方形, BCADCD,D90,ADBC, BCADCD12, AEADDE1257, 阴影部分的面积(AE+BC
17、)AB(7+12)12114; 故选:A 【点评】本题考查了正方形的性质、勾股定理以及梯形面积公式等知识;熟练掌握正方 形的性质,由勾股定理求出正方形的边长是解题的关键 6 (2 分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达 B 点 200m,结果他在水中实际游的路线 AC 为 520m,则该河流的宽度 AB 为( ) 第 10 页(共 25 页) A480 m B380 m C580 m D500 m 【分析】从实际问题中找出直角三角形,利用勾股定理解答 【解答】解:根据勾股定理可得 AB480m, 答:该河流的宽度为 480m, 故选:A 【点评】本题考查了勾股
18、定理的应用,是实际问题但比较简单 二、填空题(每小题二、填空题(每小题 3 分,共分,共 24 分)分) 7 (3 分) 2 【分析】因为2 的立方是8,所以的值为2 【解答】解:2 故答案为:2 【点评】此题考查了立方根的意义注意负数的立方根是负数 8 (3 分)二次根式中的字母 a 的取值范围是 a1 【分析】根据二次根式的被开方数为非负数,可得出关于 a 的不等式,继而可得出 a 的 取值范围 【解答】解:由题意得,a+10, 解得:a1 故答案为:a1 【点评】此题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式的被开方 数为非负数,难度一般 9 (3 分)某人参加一次应聘,计
19、算机、英语、操作成绩(单位:分)分别为 80、90、82, 若三项成绩分别按 3:5:2,则她最后得分的平均分为 85.4 分 【分析】根据三项成绩的不同权重,依据加权平均数的定义计算可得 【解答】解:她最后得分的平均分为85.4(分) , 故答案为:85.4 分 第 11 页(共 25 页) 【点评】本题考查了加权平均数的计算加权成绩等于各项成绩乘以不同的权重的和 10 (3 分)甲、乙、丙三名同学在本学期几次数学测验中,三人的平均成绩都是 96 分同, 方差分别为:S甲 238,S 乙 214,S 丙 229,则三人中成绩最稳定的是 乙 【分析】根据方差的定义判断,方差越小数据越稳定 【解
20、答】解:S乙 2S 丙 2S 甲 2, 三人中成绩最稳定的是乙, 故答案为:乙 【点评】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表 明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组 数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定 11 (3 分)如图,直线 ykx+b 交 x 轴于点 A(3,0) ,交 y 轴于点 B(0,4) ,则不等式 x(kx+b)0 的解集为 3x0 【分析】结合函数图象,当自变量与 y 的值异号时即可 【解答】解:当 x3 时,ykx+b0,则 x(kx+b)0; 当3x0 时,ykx+b0,则 x
21、(kx+b)0; 当 x0 时,ykx+b0,则 x(kx+b)0; 所以不等式 x(kx+b)0 的解集为为3x0 故答案为3x0 【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函 数 ykx+b 的值大于(或小于)0 的自变量 x 的取值范围;从函数图象的角度看,就是确 定直线 ykx+b 在 x 轴上(或下)方部分所有的点的横坐标所构成的集合 12 (3 分)如图,ABC 中,ABAC,D 为 AB 中点,E 在 AC 上,且 BEAC,若 DE 5,AE8,则 BC 的长度为 2 第 12 页(共 25 页) 【分析】由 BEAC,D 为 AB 中点,DE5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 吉林市 年级 期末 数学试卷
链接地址:https://www.77wenku.com/p-133304.html