中考数学压轴专练专题08 二次函数与菱形存在型问题(学生版)
《中考数学压轴专练专题08 二次函数与菱形存在型问题(学生版)》由会员分享,可在线阅读,更多相关《中考数学压轴专练专题08 二次函数与菱形存在型问题(学生版)(11页珍藏版)》请在七七文库上搜索。
1、 1 【典例分析】 例 1 如图,在平面直角坐标系中,直线 AB 和抛物线交于点 A(-4,0) ,B(0,4) ,且点 B 是抛物线的顶 点 (1)求直线 AB 和抛物线的解析式 (2)点 P 是直线上方抛物线上的一点,求当PAB 面积最大时点 P 的坐标 (3)M 是直线 AB 上一动点,在平面直角坐标系内是否存在点 N,使以 O、B、M、N 为顶点的四边形是 菱形?若存在,请求出点 N 的坐标;若不存在,请说明理由 例 2 如图,抛物线的图象经过点 A(2,0) ,点 B(4,0) ,点 D(2,4) ,与 y 轴交于点 C,作直线 BC,连接 AC,CD 来源:Z。xx。k.Com (
2、1)求抛物线的函数表达式; (2)E 是抛物线上的点,求满足ECD=ACO 的点 E 的坐标; (3)点 M 在 y 轴上且位于点 C 上方,点 N 在直线 BC 上,点 P 为第一象限内抛物线上一点,若以点 C, M,N,P 为顶点的四边形是菱形,求菱形的边长 例 3 如图,已知点 A (2,4) 和点 B (1,0)都在抛物线 2 ymx2mx n上. 2 (1)求 m、n; (2)向右平移上述抛物线,记平移后点 A 的对应点为 A,点 B 的对应点为 B,若四边形 A ABB 为菱形, 求平移后抛物线的表达式; (3)记平移后抛物线的对称轴与直线 AB 的交点为 C,试在 x 轴上找一个
3、点 D,使得以点 B、C、D 为顶 点的三角形与ABC 相似. 例 4 如图,在平面直角坐标系中,已知抛物线与 轴交于 O 点、A 点,B 为抛物线上一点, C 为 y 轴上一点,连接 BC,且 BC/OA,已知点 O(0,0) ,A(6,0) ,B(3,m) ,AB=. (1)求 B 点坐标及抛物线的解析式., (2)M 是 CB 上一点,过点 M 作 y 轴的平行线交抛物线于点 E,求 DE 的最大值; (3)坐标平面内是否存在一点 F,使得以 C、B、D、F 为顶点的四边形是菱形?若存在,求出符合条件的 点 F 坐标;若不存在,请说明理由. 例 5 如图,抛物线 y= x2+bx+c 与
4、 x 轴交于 A、B 两点,与 y 轴交于点 C,其对称轴交抛物线于点 D,交 x 轴于点 E,已知 OB=OC=6 (1)求抛物线的解析式及点 D 的坐标; (2)连接 BD,F 为抛物线上一动点,当FAB=EDB 时,求点 F 的坐标; (3)平行于 x 轴的直线交抛物线于 M、N 两点,以线段 MN 为对角线作菱形 MPNQ,当点 P 在 x 轴上,且 PQ= MN 时,求菱形对角线 MN 的长 3 例 6 如图(1), 已知菱形的边长为, 点在 轴负半轴上, 点 在坐标原点, 点的坐标为 (, ) ,抛物线顶点在边上,并经过边的中点 (1)求这条抛物线的函数解析式; (2)点关于直线的
5、对称点是,求点到点的最短距离; (3)如图(2)将菱形以每秒 个单位长度的速度沿轴正方向匀速平移,过点 作于点 , 交抛物线于点 ,连接、设菱形平移的时间为 秒() ,问是否存在这样的 ,使与 相似?若存在,求出 的值;若不存在,请说明理由 【变式训练】 1 如图, 在平面直角坐标系中, 点 A (, 0) 是 轴上一点, 以 OA 为对角线作菱形 OBAC, 使得60 , 现将抛物线沿直线 OC 平移到,则当抛物线与菱形的 AB 边有公共点时,则 m 的取 值范围是( ) A B C D 4 2直线 1 2 2 yx与y轴交于点 A,与直线 1 2 yx 交于点 B,以 AB 为边向右作菱形
6、 ABCD,点 C 恰与 原点 O 重合,抛物线 2 yxhk的顶点在直线 1 2 yx 上移动,若抛物线与菱形的边 AB、BC 都有 公共点,则h的取值范围是( ) A 1 2 2 h B21h C 3 1 2 h D 1 1 2 h 3如图 1,菱形 ABCD 的对角线交于点 O,AC=2BD,点 P 是 AO 上一个动点,过点 P 作 AC 的垂线交菱 形的边于 M,N 两点设 APx,OMN 的面积为 y,表示 y 与 x 的函数关系大致如图 2 所示的抛物线 (1)图 2 所示抛物线的顶点坐标为( , ) ; (2)菱形 ABCD 的周长为 4二次函数 2 2 3 yx的图象如图所示
7、,自原点开始依次向上作内角为 60 度、120 度的菱形(其中两个顶点 在抛物线上另两 个顶点在 y 轴上,相邻的菱形在 y 轴上有一个公共点) ,则第 2017 个菱形的周长 =_ 5如图,在平面直角坐标系中,菱形 ABCD 的三个顶点 A,B,D 均在抛物线 y=ax24ax+3(a0)上若 点 A 是抛物线的顶点,点 B 是抛物线与 y 轴的交点,则点 D 的坐标为_ 5 6如图,在平面直角坐标系中,O 是坐标原点,菱形 OABC 的顶点 A(3,4) ,C 在 x 轴的负半轴,抛物 线 y= (x2)2+k 过点 A (1)求 k 的值; (2)若把抛物线 y= (x2)2+k 沿 x
8、 轴向左平移 m 个单位长度,使得平移后的抛物线经过菱形 OABC 的顶点 C试判断点 B 是否落在平移后的抛物线上,并说明理由 7如图,已知点 A (-2,4) 和点 B (1,0)都在抛物线 y=mx2+2mx+n 上 (1)求 m、n 值; (2) 向右平移上述抛物线,记平移后点 A 的对应点为 A,点 B 的对应点为 B,若四边形AA B B 为菱形,求平移 后抛物线的表达式; (3)试求出菱形AA B B 的对称中心点 M 的坐标 8如图 1,抛物线 2 21yaxax,其中(0)a ,点 A(-2,m)在该抛物线上,过点 A 作直线 lx B A O 1 1 x y 6 轴,与抛物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学压轴专练专题08 二次函数与菱形存在型问题学生版 中考 数学 压轴 专题 08 二次 函数 菱形 存在 问题 学生
链接地址:https://www.77wenku.com/p-133478.html