备战2019中考数学热点难点突破第3.4讲 变式探究题(学生版)
《备战2019中考数学热点难点突破第3.4讲 变式探究题(学生版)》由会员分享,可在线阅读,更多相关《备战2019中考数学热点难点突破第3.4讲 变式探究题(学生版)(7页珍藏版)》请在七七文库上搜索。
1、 1 【备战 2019 年中考数学热点、难点突破】 专题专题 04 变式探究题变式探究题 考纲要求考纲要求: 变式探究题比一般综合题更能考查学生的分析、探索能力以及思维的发散、综合运用知识的能力,难度适 中,从而深受命题者的青睐,中考题型以填空题、解答题为主,难度一般不是很大 基础知识回顾基础知识回顾: 解变式探究题时,一般先观察、试验、类比、归纳、猜测出结论或条件,然后严格证明,解题的过程中通 常要结合分类讨论、数型结合、分析综合,归纳猜想等数型思想方法. 应用举例应用举例: 类型一、类型一、特殊的四边形的变式题 【例【例 1】在正方形 ABCD 中,AB=8,点 P 在边 CD 上,tan
2、PBC= 3 4 ,点 Q 是在射线 BP 上的一个动点, 过点 Q 作 AB 的平行线交射线 AD 于点 M,点 R 在射线 AD 上,使 RQ 始终与直线 BP 垂直 (1)如图 1,当点 R 与点 D 重合时,求 PQ 的长; (2)如图 2,试探索: RM MQ 的比值是否随点 Q 的运动而发生变化?若有变化,请说明你的理由;若没有 变化,请求出它的比值; (3)如图 3,若点 Q 在线段 BP 上,设 PQ=x,RM=y,求 y 关于 x 的函数关系式,并写出它的定义域 类型二、类型二、三角形有关的变式题 【例【例 2】数学课上,张老师出示了问题:如图 1,AC,BD 是四边形 AB
3、CD 的对角线,若 ACB=ACD=ABD=ADB=60 ,则线段 BC,CD,AC 三者之间有何等量关系? 经过思考,小明展示了一种正确的思路:如图 2,延长 CB 到 E,使 BE=CD, 连接 AE, 证得ABEADC, 从而容易证明ACE 是等边三角形,故 AC=CE,所以 AC=BC+CD 小亮展示了另一种正确的思路:如图 3,将ABC 绕着点 A 逆时针旋转 60 ,使 AB 与 AD 重合,从而容易 证明ACF 是等边三角形,故 AC=CF,所以 AC=BC+CD 2 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图 4,如果把“ACB=ACD=ABD=ADB=60”改
4、为 “ACB=ACD=ABD=ADB=45”,其它条件不变,那么线段 BC,CD,AC 三者之间有何等量关系?针 对小颖提出的问题,请你写出结论,并给出证明 (2)小华提出:如图 5,如果把“ACB=ACD=ABD=ADB=60”改为 “ACB=ACD=ABD=ADB=”,其它条件不变,那么线段 BC,CD,AC 三者之间有何等量关系?针对 小华提出的问题,请你写出结论,不用证明 类型三、类型三、图形的旋转与对称变式 【例【例 3】如图 1,ABC 是等腰直角三角形,BAC=90 ,AB=AC,四边形 ADEF 是正方形,点 B、C 分 别在边 AD、AF 上,此时 BD=CF,BDCF 成立
5、 (1)当ABC 绕点 A 逆时针旋转 (0 90 )时,如图 2,BD=CF 成立吗?若成立,请证明,若不成 立,请说明理由; (2)当ABC 绕点 A 逆时针旋转 45 时,如图 3,延长 BD 交 CF 于点 H 求证:BDCF; 当 AB=2,AD=3 时,求线段 DH 的长 3 方法、规律归纳方法、规律归纳: 解开放型问题时,一般先观察、试验、类比、归纳、猜测出结论或条件,然后严格证明,解题的过程中通 常要结合分类讨论、数型结合、分析综合,归纳猜想等数型思想方法. 实战演练实战演练: 1. 在 RtABC 中, ACB=90 , 点 D 与点 B 在 AC 同侧, DACBAC, 且
6、 DA=DC, 过点 B 作 BEDA 交 DC 于点 E,M 为 AB 的中点,连接 MD,ME (1)如图 1,当ADC=90 时,线段 MD 与 ME 的数量关系是 ; (2)如图 2,当ADC=60 时,试探究线段 MD 与 ME 的数量关系,并证明你的结论; (3)如图 3,当ADC= 时,求 ME MD 的值 2. 如图,ABC 和ADE 是有公共顶点的直角三角形,BACDAE90 ,点 P 为射线 BD,CE 的交 点 (1)如图 1,若ABC 和ADE 是等腰三角形,求证:ABDACE; (2)如图 2,若ADEABC30 ,问:(1)中的结论是否成立?请说明理由 (3)在(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 2019 中考 数学 热点 难点 突破
链接地址:https://www.77wenku.com/p-133572.html