备战2019中考数学热点难点突破第2.5讲 圆的综合题(教师版)
《备战2019中考数学热点难点突破第2.5讲 圆的综合题(教师版)》由会员分享,可在线阅读,更多相关《备战2019中考数学热点难点突破第2.5讲 圆的综合题(教师版)(31页珍藏版)》请在七七文库上搜索。
1、 1 【备战 2019 年中考数学热点、难点突破】 考纲要求考纲要求: 1圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系的证明会有所下降趋势, 不会有太复杂的大题出现. 2今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究 型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生 活 基础知识回顾基础知识回顾: 知识知识点点 1:圆的有关性质和计算:圆的有关性质和计算 弧、弦、圆心角之间的关系: 在同圆或等圆中,如果两条劣弧(优弧)、两个圆心角中有一组量对应相等,那么它们所对应的其余各组 量也分别
2、对应相等 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 垂径定理的推论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半 圆内接四边形的性质: 圆的内接四边形对角互补,并且任何一个外角等于它的内对角 知识点知识点 2:点与圆的位置关系:点与圆的位置关系 设点与圆心的距离为d,圆的半径为r, 则点在圆外dr; 点在圆上dr; 点在圆内dr 过不在同一直线上的三点有且只有一个圆 一个三角形有且只
3、有一个外接圆 三角形的外心是三角形三边垂直平分线的交点 三角形的外心到三角形的三个顶点的距离相等来源:Z|X|X|K 知识点知识点 3:直线与圆的位置关系:直线与圆的位置关系 设圆心到直线的距离为d,圆的半径为r, 2 则直线与圆相离dr;直线与圆相切dr;直线与圆相交dr 切线的性质:与圆只有一个公共点; 圆心到切线的距离等于半径; 圆的切线垂直于过切点的半径 切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线 到圆心的距离等于半径的直线是圆的切线 经过半径的外端且垂直于这条半径的直线是圆的切线 三角形的内心是三角形三条内角平分线的交点 三角形的内心到三角形三边的距离相等 切
4、线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等 这一点和圆心的连线平分这两条切线的夹角! 知识点知识点 4:圆与圆的位置关系:圆与圆的位置关系 圆与圆的位置关系有五种:外离、外切、相交、内切、内含 设两圆心的距离为d,两圆的半径为 12 rr、,则两圆外离 12 drr 两圆外切 12 drr 两圆相交 1212 rrdrr 两圆内切 12 drr 两圆内含 12 drr 两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴 由对称性知:两圆相切,连心线经过切点两圆相交,连心线垂直平分公共弦 两圆公切线的定义:和两个
5、圆都相切的直线叫做两圆的公切线 两个圆在公切线同旁时,这样的公切线叫做外公切线 两个圆在公切线两旁时,这样的公切线叫做内公切线 公切线上两个切点的距离叫做公切线的长 知识点知识点 5:与圆有关的计算:与圆有关的计算 弧长公式: 180 n r l 扇形面积公式: 2 1 3602 n r Slr 扇形 3 (其中n为圆心角的度数,r为半径) 圆柱的侧面展开图是矩形 圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体 圆柱的侧面积底面周长高 圆柱的全面积侧面积2底面积 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长 圆锥体可以看成是由一个直角三角形
6、以一条直角边为轴旋转而成的几何体 圆锥的侧面积 1 2 底面周长母线;圆锥的全面积侧面积底面积 应用举例应用举例: 招数一、招数一、圆的基本性质证明计算题圆的基本性质证明计算题 【例【例 1】如图,在圆 O 中,弦 AB8,点 C 在圆 O 上(C 与 A,B 不重合),连接 CA、CB,过点 O 分别 作 ODAC,OEBC,垂足分别是点 D、E (1)求线段 DE 的长; (2)点 O 到 AB 的距离为 3,求圆 O 的半径 【答案】(1)DE4;(2)圆 O 的半径为 5 (2)过点 O 作 OHAB,垂足为点 H,则 OH=3,连接 OA, 4 【例【例 2】如图,点 A 在数轴上对
7、应的数为 26,以原点 O 为圆心,OA 为半径作优弧,使点 B 在 O 右下方, 且 tanAOB= ,在优弧上任取一点 P,且能过 P 作直线 lOB 交数轴于点 Q,设 Q 在数轴上对应的数 为 x,连接 OP (1)若优弧上一段的长为 13,求AOP 的度数及 x 的值; (2)求 x 的最小值,并指出此时直线 l 与所在圆的位置关系; (3)若线段 PQ 的长为 12.5,直接写出这时 x 的值 【答案】(1)POA=90 ,x=;(2)当直线 PQ 与O 相切时时,此时 x 的值为32.5;(3)满足条 件的 x 的值为16.5 或 31.5 或31.5 【解析】(1)如图 1 中
8、, 5 (2)如图当直线 PQ 与O 相切时时,x 的值最小 在 RtOPQ 中,OQ=OP =32.5,此时 x 的值为32.5; (3)分三种情况: 如图 2 中,作 OHPQ 于 H,设 OH=4k,QH=3k 在 RtOPH 中,OP2=OH2+PH2, 262=(4k)2+(12.53k)2, 整理得:k23k20.79=0, 解得 k=6.3 或3.3(舍弃), OQ=5k=31.5 此时 x 的值为 31.5 6 如图 3 中,作 OHPQ 交 PQ 的延长线于 H设 OH=4k,QH=3k 如图 4 中,作 OHPQ 于 H,设 OH=4k,AH=3k 在 RtOPH 中,OP
9、2=OH2+PH2, 262=(4k)2+(12.53k)2, 整理得:k23k20.79=0, 解得 k=6.3 或3.3(舍弃), OQ=5k=31.5 不合题意舍弃 此时 x 的值为31.5 综上所述,满足条件的 x 的值为16.5 或 31.5 或31.5 【例【例 3】如图,正方形 ABCD 内接于O,M 为弧 AD 中点,连接 BM,CM (1)求证:BM=CM; (2)当O 的半径为 2 时,求BOM 的度数 7 【答案】(1)答案见解析;(2)135 招数二、招数二、圆与圆与三角形三角形全等、相似全等、相似、四边形、四边形知识知识结合结合 【例【例 4】如图,AB 是O 的直径
10、,AB4,E 是上一点,将沿 BC 翻折后 E 点的对称点 F 落在 OA 中 点处,则 BC 的长为( ) A B2 C D 【答案】D 【解析】解:连接 OC 8 故选:D! 【例【例 5】如图,ABC 是半径为 2 的O 的内接三角形,连接 OA、OB,点 D、E、F、G 分别是 CA、OA、 OB、CB 的中点(1)试判断四边形 DEFG 的形状,并说明理由; (2)填空:若 AB=3,当 CA=CB 时,四边形 DEFG 的面积是 ; 若 AB=2,当CAB 的度数为 时,四边形 DEFG 是正方形 【答案】(1)详见解析;(2) ;75 或 15 【解析】(1)四边形 DEFG 是
11、平行四边形 点 D、E、F、G 分别是 CA、OA、OB、CB 的中点, DGAB,DG= AB,EFAB,EF= AB, DGEF,DG=EF, 四边形 DEFG 是平行四边形; (2)连接 OC, 9 CA=CB,DGOC, AD=DC,AE=EO,来源:Zxxk.Com DEOC,DE= OC=1,同理 EF= AB= , DEDG,四边形 DEFG 是矩形, 四边形 DEFG 的面积= 故答案为 ; 【例【例 6】 (2016 秋平舆县期中) 如图, O 的半径为 1, 点 A、 P、 B、 C 是O 上的四个点, APC=CPB=60 (1)求证:ABC 是等边三角形; (2)填空:
12、 PC、PB、PA 之间的数量关系是 ; 四边形 APBC 的最大面积为 10 (2)如图 1,在 PC 上截取 PD=AP, 又APC=60 , APD 是等边三角形, AD=AP=PD,ADP=60 ,即ADC=120 又APB=APC+BPC=120 , ADC=APB, 在APB 和ADC 中, , APBADC(AAS), BP=CD, 又PD=AP, CP=BP+AP, 故答案为:CP=BP+AP; 当点 P 为的中点时,四边形 APBC 的面积最大 理由如下,如图 2,过点 P 作 PEAB,垂足为 E 过点 C 作 CFAB,垂足为 F SAPB=ABPE,SABC=ABCF,
13、 S四边形APBC=AB(PE+CF), 当点 P 为的中点时,PE+CF=PC,PC 为O 的直径 此时四边形 APBC 的面积最大 11 又O 的半径为 1, 其内接正三角形的边长 AB=, S四边形APBC=2=, 故答案为: 招数三、招数三、圆与三圆与三角函数等其他知识角函数等其他知识结合结合 【例【例 7】如图,在 RtACB 中,ACB=90 ,以点 A 为圆心,AC 长为半径的圆交 AB 于点 D,BA 的延长 线交A 于点 E,连接 CE,CD,F 是A 上一点,点 F 与点 C 位于 BE 两侧,且FAB=ABC,连接 BF (1)求证:BCD=BEC; (2)若 BC=2,
14、BD=1,求 CE 的长及 sinABF 的值 【答案】(1)见解析;(2)CE=, sinABF=. (2)BCD=BEC,EBC=EBC, BDCBCE, 12 , BC=2,BD=1,BE=4,EC=2CD, DE=BEBD=3, 在 RtDCE 中,DE2=CD2+CE2=9,CD=,CE=, 过点 F 作 FMAB 于 M, FAB=ABC,FMA=ACB=90 , AFMBAC,DE=3, AD=AF=AC= ,AB= ,FM=, 【例【例 8】已知O 的直径 AB=2,弦 AC 与弦 BD 交于点 E且 ODAC,垂足为点 F (1)如图 1,如果 AC=BD,求弦 AC 的长;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 2019 中考 数学 热点 难点 突破
链接地址:https://www.77wenku.com/p-133588.html