备战2019中考数学热点难点突破第2.2讲 四边形的综合题(学生版)
《备战2019中考数学热点难点突破第2.2讲 四边形的综合题(学生版)》由会员分享,可在线阅读,更多相关《备战2019中考数学热点难点突破第2.2讲 四边形的综合题(学生版)(8页珍藏版)》请在七七文库上搜索。
1、 1 【备战 2019 年中考数学热点、难点突破】 考纲要求考纲要求: 1了解四边形的不稳定性;理解平行四边形、矩形、 菱形、正方形的概念,以及它们之间的关系. 2能利用平行四边形、矩形、 菱形、正方形的性质定理与判定定理解决有关简単问题. 3运用平行四边形、矩形、 菱形、正方形的有关内容解决有关问題. 基础知识回顾基础知识回顾: 1平行四边形的性质 平行四边形的边:平行四边形的对边平行且对边相等 平行四边形的角:平行四边形的对角相等,邻角互补 平行四边形的对角线:平行四边形的对角线互相平分 平行四边形的对称性:平行四边形是中心对称图形 平行四边形的周长:一组邻边之和的倍 平行四边形的面积:底
2、乘以高 2.平行四边形的判定 两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 两条对角线互相平分的四边形是平行四边形 两组对角分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 3矩形的性质 来源:Zxxk.Com 矩形是特殊的平行四边形,它具有平行四边形的所有性质,还具有自己独特的性质: 边的 性质:对边平行且相等 角的性质:四个角都是直角 对角线性质:对角线互相平分且相等 对称性:矩形是中心对称图形,也是轴对称图形 直角三角形斜边上的中线等于斜边的一半 直角三角形中,角所对的边等于斜边的一半 4矩形的判定 2 判定:有一个角是直角的平行四边形是
3、矩形 判定:对角线相等的平行四边形是矩形 判定:有三个角是直角的四边形是矩形 5菱形的性质 菱形是特殊的平行四边形,它具有平行四边形的所有性质,还具有自己独特的性质: 边的性质:对边平行且四边相等 角的性质:邻角互补,对角相等 来源 :ZXXK 对角线性质:对角线互相垂直平分且每条对角线平分一组对角 来源:Zxxk.Com 对称性:菱形是中心对称图形,也是轴对称图形 菱形的面积等于底乘以高,等于对角线乘积的一半 来源:Zxxk.Com 6菱形的判定 判定:一组邻边相等的平行四边形是菱形 判定:对角线互相垂直的平行四边形是菱形 判定:四边相等的四边形是菱形 7三角形的中位线 定理:三角形的中位线
4、平行第三边且长度等于第三边的一半 应用举例应用举例: 招数招数一一、特殊四边形的性质、判定的综合应用特殊四边形的性质、判定的综合应用 【例【例 1】请阅读下列材料: 问题: 如图, 在正方形和平行四边形中, 点 , , 在同一条直线上, 是线段的中点, 连接, 探究:当与的夹角为多少度时,平行四边形是正方形? 小聪同学的思路是:首先可以说明四边形是矩形;然后延长交于点 ,构造全等三角形,经过推 理可以探索出问题的答案 请你参考小聪同学的思路,探究并解决这个问题 3 (1)求证:四边形是矩形; (2)与的夹角为_度时,四边形是正方形说明理由: 招数招数二二、四边形与函数的综合四边形与函数的综合
5、【例【例 2】长方形 ABCD 位于平面直角坐标系中平行移动 (1)如图 1,若 ABx 轴且点 A 的坐标(4,4),点 C 的坐标为(1,2),在边 AB 上有动点 P,过 点 P 作直线 PQ 交 BC 边于点 Q,并使得 BP2BQ 当 SBPQ S长方形 ABCD时,求 P 点的坐标 在直线 CD 上是否存在一点 M,使得MPQ 是以 PQ 为直角边的等腰直角三角形?若存在,求出 M 点坐标: 若不存在,请说明理由来源:Z#X#X#K (2)如图 2,若 ABx 轴且 A、B 关于 x 轴对称,连接 BD、OB、OD,且 OB 平分CBD,求证:BODO 招数招数三三、四边形的动点问
6、题四边形的动点问题 【例【例 3】如图,在四边形 ABCD 中,ADBC,B=90 ,AB=8cm,AD=24cm,BC=26cm,点 P 从 A 点出 发,以 1cm/s 的速度向点 D 运动;点 Q 从点 C 同时出发,以 3cm/s 的速度向点 B 运动。 (1)从运动开始,经过多少时间点 P、Q、C、D 为边得四边形是平行四边形? (2)从运动开始,经过多少时间点 A、B、Q、P 为边得四边形是矩形? 招数招数四四、四边形中的分类讨论四边形中的分类讨论 4 【例【例 4】如图,矩形 ABCD的边 BC与 x轴重合,B、C 对应的横坐标是一元二次方程的两根, E是 AD与 y 轴的交点,
7、其纵坐标为 2,过 A、C作直线交 y 轴于 F. (1)求直线 AF的解析式 (2)M 是 BC 上一点,其横坐标为 2,在坐标轴上,你能否找到一点 P,使?若能,求出点 P 的 坐标;若不能,请说明理由.来源: (3) 点 Q是 x 轴上一动点,连接 AQ,Q在运动过程中 AQ+是否存在最小值?若存在, 请求出 AQ+最 小值及 Q 的坐标;若不存在,请说明理由. 招数招数五五、四边形中的几何变换问题四边形中的几何变换问题 【例【例 5】如图 1,放置的一副三角尺,将含 45 角的三角尺斜边中点 O 为旋转中心,逆时针旋转 30 得到如 图 2,连接 OB、OD、AD (1)求证:AOBA
8、OD; (2)试判定四边形 ABOD是什么四边形,并说明理由 【例【例 6】在菱形 ABCD 中,BAD=,E 为对角线 AC 上的一点(不与 A,C 重合),将射线 EB 绕点 E 顺时针旋转 角之后,所得射线与直线 AD 交于 F 点试探究线段 EB 与 EF 的数量关系 (1)如图 1,当 =90时,EB 与 EF 的数量关系为 (2)如图 2,当 =60,=120时 依题意补全图形; 探究(1)的结论是否成立若成立,请给出证明;若不成立,请举出反例说明; 5 (3)在此基础上对一般的图形进行了探究,设ABE=,若旋转后所得的线段 EF 与 EB 的数量关系满足 (1)中的结论,请直接写
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 2019 中考 数学 热点 难点 突破
链接地址:https://www.77wenku.com/p-133592.html