备战2019中考数学热点难点突破第1.4讲 分式方程中的参数问题(教师版)
《备战2019中考数学热点难点突破第1.4讲 分式方程中的参数问题(教师版)》由会员分享,可在线阅读,更多相关《备战2019中考数学热点难点突破第1.4讲 分式方程中的参数问题(教师版)(9页珍藏版)》请在七七文库上搜索。
1、 1 【备战 2019 年中考数学热点、难点突破】 考纲要求考纲要求: : 1. 了解分式方程的概念 2.会解可化为一元一次方程的分式方程(方程中的分式不超过两个),会对分式方程的解进行检验. 3.会用分式方程解决简单的事件问题. 基础知识回顾基础知识回顾: : 1. 分式方程的定义: 分母中 含有未知数的方程叫做分式方程. 2. 解分式方程的一般步骤: 1 去分母化分式方程为整式方程. 2 解这个整式方程,求出整式方程的根. 3 检验,得出结论.一般代入原方程的最简公分母进行检验. 3. 增根.增根是分式方程化为整式方程的根,但它使得原分式方程的分母为零. 应用举例应用举例: : 招数一、招
2、数一、分式分式方程增根问题方程增根问题:增根问题可按如下步骤进行:让最简公分母 0,确定增根;化分式方程 为整式方程;把增根代入整式方程即可求得相关字母的值 【例【例 1】当_时,解分式方程会出现增根 【答案】2 考点:分式方程的增根 招数二、招数二、分式分式方程方程无无解问题解问题:分式方程无解分为以下两种情况:原方程解不出数来,也就是整式方程无 解;整式方程能解出来,但是解出来的数使得原分式方程的分母为零,也就是所谓的增根,所以切记一 2 定要讨论。 【例【例 2】若关于 x 的方程无解,则 m 的值为_ 【答案】-1 或 5 或 考点:分式方程的解 招数三、招数三、已知分式方程解的已知分
3、式方程解的范围求参数范围范围求参数范围问题:问题:明确告诉了解的范围,首先还是要按正常步骤解出方程, 解中肯定带有参数,再根据解的范围求参数的范围,注意 :最后一定要讨论增根的问题.来源: 【例【例 3】关于 x 的方程1 的解是非负数,则 a 的取值范围是( ) Aa3 Ba3 Ca3 且 a Da3 且 a 【答案】D 【解析】 解:解方程1,得:xa3, 方程1 的解是非负数, a30 且a3 , 解得:a3 且 a , 故选:D 【例【例 4】若关于 x 的分式方程=1 的解是负数,求 m 的取值范围. 3 【答案】m2 且 m0. 【解析】 解:由=1,得(x+1)2-m=x2-1,
4、解得 x=-1+ . 由已知可得-1+ 0,-1+ 1 且-1+ -1, 解得 m2 且 m0. 招数招数四四、与与其它方程或其它方程或不等式不等式结合结合求求参数问题:参数问题: 【例【例 5】关于 x 的两个方程 2 60xx与 21 3xmx 有一个解相同,则 m= 【答案】8 【解析】 考点:1分式方程的解;2解一元二次方程-因式分解法 【例【例 6】若数 使关于 x 的不等式组有且只有四个整数解,且使关于 y 的方程 的解为非负数,则符合条件的所有整数 的和为( ) A B C1 D2 【答案】C 【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出 a 的取值范围,解分式方
5、程后根据解 为非负数,可得关于 a 的不等式组,解不等式组求得 a 的取值范围,即可最终确定出 a 的范围,将范围内的 整数相加即可得. 【详解】解不等式,得, 由于不等式组只有四个整数解,即只有 4 个整数解, , ; 4 解分式方程,得, 考点:1解分式方程;2解一元一次不等式组;3含待定字母的不等式(组) 方法、规律归纳方法、规律归纳: 1.按照基本步骤解分式方程时,关键是确定各分式的最简公分母,若分母为多项式时,应首先进行因式分 解,将分式方程转化为整式方程,给分式方程乘最简公分母时,应对分式方程的每一项都乘以最简公分母 ,不能漏乘常数项; 2检验分式方程的根是否为增根,即分式方程的增
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 2019 中考 数学 热点 难点 突破
链接地址:https://www.77wenku.com/p-133609.html