2019-2020学年河南省郑州市八校高二(上)期中数学试卷(理科)含详细解答
《2019-2020学年河南省郑州市八校高二(上)期中数学试卷(理科)含详细解答》由会员分享,可在线阅读,更多相关《2019-2020学年河南省郑州市八校高二(上)期中数学试卷(理科)含详细解答(21页珍藏版)》请在七七文库上搜索。
1、在ABC 中,A45,B60,a2,则 b 等于( ) A B C D 3 (5 分)设an是公比为 q 的等比数列,则“q1”是“an为递增数列”的( ) A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件 4 (5 分)下列有关命题的说法中错误的是( ) A若 pq 为假命题,则 p、q 均为假命题 B “x1”是“x23x+20”的充分不必要条件 C命题“若 x23+20,则 x1“的逆否命题为: “若 x1,则 x23x+20” D对于命题 p:xR,使得 x2+x+10,则 p:xR,均有 x2+x+10 5 (5 分)已知在ABC 中内角 ABC 的对边
2、分别为 ab 边 c 上的高为,ab2, 则角 C 的大小( ) A B C D 6 (5 分)若 x,y 满足x+1yx,则 y2x 的最大值是( ) A2 B2 C1 D1 7 (5 分)已知在ABC 中,内角 A、B、C 所对的边分别为 a、b、c,A60,b4, 若此三角形有且只有一个,则 a 的取值范围是( ) A0a4 Ba6 Ca4或 a6 D0a4 8 (5 分)在等差数列an中,a10,a2012+a20130,a2012a20130,则使 Sn0 成立的最 大自然数 n 是( ) A4025 B4024 C4023 D4022 第 2 页(共 21 页) 9 (5 分)已知
3、函数,若数列an满足 anf(n) (nN+)且 对任意的两个正整数 m,n(mn)都有(mn) (aman)0,那么实数 a 的取值范 围是( ) A,3) B (,3) C (2,3) D (1,3) 10 (5 分)在ABC 中,A 为锐角,lgb+lg()lgsinAlg,则ABC 为( ) A等腰三角形 B等边三角形 C直角三角形 D等腰直角三角形 11 (5 分)已知数列an满足,Sn是数列an 的前 n 项和,若 S2017+m1010,且 a1m0,则的最小值为( ) A2 B C D 12 (5 分)若正数 x,y 满足 x+2y+44xy,且不等式(x+2y)a2+2a+2
4、xy340 恒成立, 则实数 a 的取值范围是( ) A (,+) B (,3,+) C (,3,+) D (,+) 二二.填空题:本大题共填空题:本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分请将答案填写在答题卡上分请将答案填写在答题卡上 13 (5 分)设数列an满足 a11,且 an+1ann+1(nN*) ,则数列的前 10 项的和 为 14(5 分) 在ABC 中, 已知 b1, c2, AD 是A 的平分线, AD, 则C 15(5 分) 设不等式组表示的平面区域为 1, 平面区域 2与 1关于直线 2x+y 0 对称,对于任意的 C1,D2,则|CD|的最小值
5、为 16 (5 分)在ABC 中,ACB60,BC2,ACAB+1,当ABC 的周长最短时,BC 的长是 三、解答题:共三、解答题:共 70 分解答应写出文字说明,证明分解答应写出文字说明,证明过程或演算步骤过程或演算步骤 17 (10 分)设 p:实数 x 满足 x24ax+3a20,q:实数 x 满足|x3|1 第 3 页(共 21 页) (1)若 a1,且 pq 为真,求实数 x 的取值范围; (2)若 a0 且p 是q 的充分不必要条件,求实数 a 的取值范围 18 (12 分)已知关于 x 的不等式 kx22x+6k0(k0) (1)若不等式的解集是x|x3 或 x2,求 k 的值;
6、 (2)若不等式的解集是 R,求 k 的取值范围; (3)若不等式的解集为,求 k 的取值范围 19 (12 分)在ABC 中,a,b,c 分别为角 A,B,C 的对边,若 a,b,c 成等差数列, ABC 的周长为 15,且 c2a2+b2+ab ()求ABC 的面积; ()设 G 为ABC 的重心,求 CG 的长 20 (12 分)已知等差数列an与公比为正数的等比数列bn满足 b12a12,a2+b310, a3+b27 (1)求an,bn的通项公式; (2)若,求数列cn的前 n 项和 Sn 21 (12 分)郑州市某棚户区改造建筑用地平面示意图如图所示,经规划调研确定,棚改规 划建筑
7、用地区域近似的为圆面,该圆面的内接四边形 ABCD 是原棚户区建筑用地,测量 可知边界 ABAD4 万米,BC6 万米,CD2 万米 (1)请计算原棚户区建筑用地 ABCD 的面积及线段 AC 的长; (2)因地理条件的限制,边界 AD,DC 不能变更,而边界 AB,BC 可以调整,为了提高 棚户区改造建筑用地的利用率,请在弧上设计一点 P,使得棚户区改造的新建筑用地 APCD 的面积最大,并求最大值 22 (12 分)各项均为正数的数列an的前 n 项和为 Sn,且满足 a24,an+126Sn+9n+1, nN*各项均为正数的等比数列bn满足 b1a1,b3a2 (1)求证an为等差数列并
8、求数列an、bn的通项公式; 第 4 页(共 21 页) (2)若 cn(3n2) bn,数列cn的前 n 项和 Tn 求 Tn; 若对任意 n2, nN*, 均有恒成立, 求实数 m 的取值范围 第 5 页(共 21 页) 2019-2020 学年河南省郑州市八校高二(上)期中数学试卷(理学年河南省郑州市八校高二(上)期中数学试卷(理 科)科) 参考答案与试题解析参考答案与试题解析 一、选择题,本大题共一、选择题,本大题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分,在每小题给出的四个选项中只有分,在每小题给出的四个选项中只有 一项是符合题目要求的一项是符合题目要求的 1 (
9、5 分)已知 a0,1b0,则有( ) Aab2aba Baabab2 Cabbab2 Dabab2a 【分析】根据不等式的性质,逐一分析四个答案的真假,可得答案 【解答】解:a0,1b0, 0b21,ab0, ab2a,ab2ab,aba, abab2a, 故选:D 【点评】本题以命题的真假判断与应用为载体,考查了不等式的基本性质,难度不大, 属于基础题 2 (5 分)在ABC 中,A45,B60,a2,则 b 等于( ) A B C D 【分析】由正弦定理可得,代入可求 【解答】解:由正弦定理可得, 故选:A 【点评】本题主要考查了正弦定理在解三角形中的应用,属于基础试题 3 (5 分)设
10、an是公比为 q 的等比数列,则“q1”是“an为递增数列”的( ) A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件 【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论 第 6 页(共 21 页) 【解答】解:等比数列1,2,4,满足公比 q21,但an不是递增数列, 充分性不成立 若 an1为递增数列,但 q1 不成立,即必要性不成立, 故“q1”是“an为递增数列”的既不充分也不必要条件, 故选:D 【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值 法是解决本题的关键 4 (5 分)下列有关命题的说法中错
11、误的是( ) A若 pq 为假命题,则 p、q 均为假命题 B “x1”是“x23x+20”的充分不必要条件 C命题“若 x23+20,则 x1“的逆否命题为: “若 x1,则 x23x+20” D对于命题 p:xR,使得 x2+x+10,则 p:xR,均有 x2+x+10 【分析】本选择题可以逐一判断,显然对于 A 选项 pq 为假命题可知 p、q 一假一真或 者均为假命题,因此 A 的结论错误,选择 A 项即可 对于 B 项,x1x23x+20,反之无法推出,所以“x1”是“x23x+20”的充分 不必要条件 对于 C 项条件,结论否定且互换,正确 特称命题的否定是全称命题,由xR,使得
12、x2+x+10 对应的全称命题是:xR,均有 x2+x+10,可知 D 判断正确 【解答】解:对于选项 A,由命题 pq 为假命题可知命题 p 和命题 p 至少有一个为假, 命题 p、q 均为假命题错误,所以选则 A 项 对于 B 项,x1x23x+20,但是 x23x+20x1 故“x1”是“x23x+20” 的充分不必要条件,判断对 对于 C 项,由逆否命题的概念可知 C 项中的命题是真命题,判断对, 对于 D 项,有特称命题的否定是全称命题可知选项 D 中的命题的否命题是 p:xR, 均有 x2+x+10,推理对 故选:A 【点评】本题考查复合命题的真假判断问题,充要条件,命题的否定,全
13、称命题以及特 称命题的概念 第 7 页(共 21 页) 5 (5 分)已知在ABC 中内角 ABC 的对边分别为 ab 边 c 上的高为,ab2, 则角 C 的大小( ) A B C D 【分析】根据三角形的面积公式,解得 sinCcosC,即 tanC1,即可求解 C 的大小; 【解答】解:由题意,根据三角形的面积公式,可得:absinCc, 解得 sinCcosC, 即 tanC1, 又 0C, 可得 C 故选:A 【点评】本题主要考查了余弦定理和三角形的面积公式的应用,其中在解有关三角形的 题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息,合理选 择正、余弦定理求解,
14、着重考查了运算与求解能力,属于基础题 6 (5 分)若 x,y 满足x+1yx,则 y2x 的最大值是( ) A2 B2 C1 D1 【分析】作出 x,y 满足的可行域,利用 z 的几何意义即可解答 【解答】解:作出实数 x,y 满足不等式组对应的平面区域如图(阴影部分) : 令 z2x+y,则 y2x+z,由图可知当直线 y2x 过点 A(2,2)时,z 最大, 即2x+y 取最大值为4+22, 故选:A 第 8 页(共 21 页) 【点评】本题主要考查线性规划的应用,利用 z 的几何意义,利用结合数形结合是解决 本题的关键属于基础题 7 (5 分)已知在ABC 中,内角 A、B、C 所对的
15、边分别为 a、b、c,A60,b4, 若此三角形有且只有一个,则 a 的取值范围是( ) A0a4 Ba6 Ca4或 a6 D0a4 【分析】根据题意求出 csinA6,然后数形结合可得 a 的范围 【解答】解:在ABC 中,A60,b4, 由正弦定理可得 bsinA46; 这样的三角形有且只有一个,a6 或 a4; 故选:C 【点评】本题考查正弦定理的应用,考查三角形解得情况,考查特殊角的三角函数值, 属于基础题 8 (5 分)在等差数列an中,a10,a2012+a20130,a2012a20130,则使 Sn0 成立的最 大自然数 n 是( ) 第 9 页(共 21 页) A4025 B
16、4024 C4023 D4022 【分析】由题意可得 a20120,a20130,再根据 S40242012 (a2012+a2013 )0,而 S40254025a20130,由此可得 Sn0 成立的最大自然数 n 的值 【解答】解:等差数列an,首项 a10,a2012+a20130,a2012a20130, a20120,a20130 假设 a20120a2013,则 d0,而 a10,可得 a2012a1+2011d0,矛盾,故不可能 再根据 S40242012(a2012+a2013 )0, 而 S40254025a20130, 因此使前 n 项和 Sn0 成立的最大自然数 n 为
17、4024 故选:B 【点评】本题考查了等差数列的性质,考查了等差数列的前 n 项和,当等差数列中有奇 数项时,前 n 项和等于中间项乘以项数,属于基础题 9 (5 分)已知函数,若数列an满足 anf(n) (nN+)且 对任意的两个正整数 m,n(mn)都有(mn) (aman)0,那么实数 a 的取值范 围是( ) A,3) B (,3) C (2,3) D (1,3) 【分析】由函数 f(x),数列 an满足 anf(n) (nN*) ,且对任 意的两个正整数 m,n(mn)都有(mn) (aman)0,我们得函数 f(x) 为增函数,根据分段函数的性质,我们得函数在各段上均为增函数,
18、根据一次函数和指数函数单调性,我们易得 a1,且 3a0,且 f(7)f(8) ,由此 构造一个关于参数 a 的不等式组,解不等式组即可得到结论 【解答】解:对任意的两个正整数 m,n(mn)都有(mn) (aman)0, 数列an是递增数列, 又f(x), anf(n) (nN*) , 第 10 页(共 21 页) 1a3 且 f(7)f(8) 7(3a)3a2 解得 a9,或 a2 故实数 a 的取值范围是(2,3) 故选:C 【点评】本题考查的知识点是分段函数,其中根据分段函数中自变量 nN*时,对应数列 为递增数列,得到函数在两个段上均为增函数,且 f(7)f(8) ,从而构造出关于变
19、量 a 的不等式是解答本题的关键 10 (5 分)在ABC 中,A 为锐角,lgb+lg()lgsinAlg,则ABC 为( ) A等腰三角形 B等边三角形 C直角三角形 D等腰直角三角形 【分析】根据对数的运算法则,得到sinA,结合 A 为锐角得到 A,再利 用余弦定理表示 a2的式子, 化简整理得 ab, 由此得到ABC 为以 c 为斜边的等腰直角 三角形 【解答】解:lgb+lg()lgsinAlg,A 为锐角, sinA,即 c且 A 根据余弦定理,得 a2b2+c22bccosb2+2b22bbb2 abc,可得ABC 是以 c 为斜边的等腰直角三角形 故选:D 【点评】本题给出含
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 河南省 郑州市 八校高二 期中 数学试卷 理科
链接地址:https://www.77wenku.com/p-136643.html