北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》课件
《北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》课件》由会员分享,可在线阅读,更多相关《北师大版七年级数学下册《4.3 第1课时 利用“边边边”判定三角形全等》课件(29页珍藏版)》请在七七文库上搜索。
1、3 探索三角形全等的条件,导入新课,讲授新课,当堂练习,课堂小结,第四章 三角形,第1课时 利用“边边边”判定三角形全等,北师大版七年级数学下教学课件,1.了解三角形的稳定性,掌握三角形全等的“SSS” 判定,并能应用它判定两个三角形是否全等; (重点) 2.由探索三角形全等条件的过程,体会由操作、归 纳获得数学结论的过程(难点),学习目标,1. 什么叫全等三角形?,能够重合的两个三角形叫 全等三角形.,3.已知ABC DEF,找出其中相等的边与角.,AB=DE, CA=FD, BC=EF, A= D, B=E, C= F,2. 全等三角形有什么性质?,全等三角形的对应边相等,对应角相等.,导
2、入新课,如果只满足这些条件中的一部分,那么能保证ABCDEF吗?,想一想:,即:三条边分别相等,三个角分别相等的两个三角形全等,探究活动1:一个条件可以吗?,(1)有一条边相等的两个三角形,不一定全等,(2)有一个角相等的两个三角形,不一定全等,结论:,有一个条件相等不能保证两个三角形全等.,讲授新课,有两个条件对应相等不能保证三角形全等.,不一定全等,探究活动2:两个条件可以吗?,不一定全等,不一定全等,结论:,(1)有两个角对应相等的两个三角形,(2)有两条边对应相等的两个三角形,(3)有一个角和一条边对应相等的两个三角形,结论:三个内角对应相等的三角形不一定全等.,(1)有三个角对应相等
3、的两个三角形,探究活动3:三个条件可以吗?,(2)三边对应相等的两个三角形会全等吗?,先任意画出一个ABC,再画出一个ABC ,使AB= AB ,BC =BC, A C =AC.把画好的ABC剪下,放到ABC上,他们全等吗?,A ,B,C,想一想:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?,作法: (1)画BC=BC; (2)分别以B,C为圆心,线段AB,AC长为半径画圆,两弧相交于点A; (3)连接线段AB,A C .,动手试一试,文字语言:三边对应相等的两个三角形全等. (简写为“边边边”或“SSS”),“边边边”判定方法,在ABC和 DEF中,, ABC DEF(SSS)
4、.,几何语言:,例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架是说明:(1)ABD ACD ,解题思路:,先找隐含条件,公共边AD,再找现有条件,AB=AC,最后找准备条件,BD=CD,D是BC的中点,证明: D 是BC中点, BD =DC 在ABD 与ACD 中,, ABD ACD ( SSS ),准备条件,指明范围,摆齐根据,写出结论,(2)BAD = CAD.,由(1)得ABDACD , BAD= CAD. (全等三角形对应角相等),如图, C是BF的中点,AB =DC,AC=DF. 试说明:ABC DCF.,在ABC 和DCF中,,AB = DC
5、,, ABC DCF,(已知),(已证),AC = DF,,BC = CF,,解:C是BF中点,,BC=CF.,(已知),(SSS).,针对训练,已知: 如图,点B、E、C、F在同一直线上 , AB = DE , AC = DF ,BE = CF . 试说明: (1)ABC DEF;,(2)A=D.,解:, ABC DEF ( SSS ).,在ABC 和DEF中,,AB = DE, AC = DF, BC = EF,,(已知),(已知) (已证), BE = CF,, BC = EF., BE+EC = CF+CE,,(1),(2) ABC DEF(已证), A=D(全等三角形对应角相等).,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 数学 下册
链接地址:https://www.77wenku.com/p-136707.html