北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》课件
《北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》课件》由会员分享,可在线阅读,更多相关《北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》课件(24页珍藏版)》请在七七文库上搜索。
1、3 探索三角形全等的条件,导入新课,讲授新课,当堂练习,课堂小结,第四章 三角形,第2课时 利用“角边角”“角角边” 判定三角形全等,北师大版七年级数学下教学课件,情境引入,1探索并正确理解三角形全等的判定方法“ASA”和“AAS” 2会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等,导入新课,如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适? 你能说明其中理由吗?,情境引入,讲授新课,问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?,图一,图二,“两角及夹边”,“两角和其
2、中一角的对边”,它们能判定两个三角形全等吗?,作图探究,先任意画出一个ABC,再画一个A B C , 使A B =AB, A =A, B =B (即使两角和它们的夹边对应相等).把画好的A B C 剪下,放到ABC上,它们全等吗?,A,B,C,E,D,作法: (1)画AB=AB; (2)在AB的同旁画DAB =A,EBA =B,AD,BE相交于点C.,想一想:从中你能发现什么规律?,“角边角”判定方法,文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).,几何语言:,例1 已知:ABCDCB,ACB DBC, 试说明:ABCDCB,ABCDCB(已知), BCC
3、B(公共边), ACBDBC(已知),,解:,在ABC和DCB中,,ABCDCB(ASA ).,判定方法:两角和它们的夹边对应相等两个三角形全等,例2 如图,点D在AB上,点E在AC上,AB=AC, B=C,试说明:AD=AE.,分析:证明ACDABE,就可以得出AD=AE.,解:在ACD和ABE中,,A=A(公共角 ), AC=AB(已知), C=B (已知 ),, ACDABE(ASA),,AD=AE.,问题:若三角形的两个内角分别是60和45,且45所对的边为3cm,你能画出这个三角形吗?,合作探究,思考:,这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?,两角分
4、别相等且其中一组对角的对边相等的两个三角形全等.简写成“角角边”或“AAS”.,归纳总结,例3:在ABC和DEF中,AD,B E,BC=EF.求说明:ABCDEF,BE, BCEF, CF.,解:,在ABC中,A+B+C180.,ABCDEF(ASA )., C180AB.,同理 F180DE.,又 AD,B E, CF.,在ABC和DEF中,,例4 如图,已知:在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E.试说明:(1)BDAAEC;,解:(1)BDm,CEm,ADBCEA90, ABDBAD90. ABAC, BADCAE90, ABDCAE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 数学 下册
链接地址:https://www.77wenku.com/p-136711.html