福建省宁德市2020届高三5月质量检查理科数学试题(含答案)
《福建省宁德市2020届高三5月质量检查理科数学试题(含答案)》由会员分享,可在线阅读,更多相关《福建省宁德市2020届高三5月质量检查理科数学试题(含答案)(16页珍藏版)》请在七七文库上搜索。
1、2020 届宁德市普通高中毕业班质量检查试卷(5.4) 理 科 数 学 本试卷共 23 题,共 150 分,共 6 页 注意事项: 1答题前,考生务必将自己的姓名、准考号填写在答题卡上考生要认真核对答题 卡上粘贴的“姓名、准考证号、考试科目”与考生本人准考证号、姓名是否一致 2选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其他答案标号非选择题用 0.5 毫米的黑色墨水签字笔在 答题卡上书写作答若在试题卷上作答,答案无效 3考试结束,监考员将试题卷和答题卡一并交回 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项
2、中,只有一项是 符合题目要求的 1设集合 |ln0Axx, |1Bx x ,则AB R I = A | 11xx B. |01xx C. | 11xx D. |1x x 2设等差数列 n a的前n项和为 n S,若 3 3a , 7 13a ,则 9 S A36 B70 C72 D144 3干支是天干(甲、乙、癸)和地支(子、丑、亥)的合 称,“干支纪年法”是我国传统的纪年法如图是查找公历某年所 对应干支的程序框图例如公元 1988 年,即输入1988N ,执行 该程序框图,运行相应的程序,输出5x ,从干支表中查出对应 的干支为戊辰我国古代杰出数学家祖冲之出生于公元年, 则该年所对应的干支为
3、 A. 己巳 B. 庚午 C. 壬戌 D. 癸亥 4 51 12x x 的展开式中, 3 x的系数是 A50 B30 C50 D30 5某几何体的三视图如图所示,则该几何体的体积为 429 开始 输入 N 是 否 输出 x 结束 六十干支表(部分) 5 6 7 戊辰 己巳 庚午 58 59 60 辛酉 壬戌 癸亥 A B9 C12 D36 6已知,0 2 ,且3sin2cos21,则cos A0 B 1 2 C 3 2 D0或 3 2 7在复平面内O为坐标原点,复数 1 i( 3i)z , 1 2 3i z z 对应的 点分别为 1 Z, 2 Z,则 12 Z OZ的大小为 A 5 12 B
4、1 2 C 7 12 D 11 12 8函数( )ln0f xaxx ()a R恒成立的一个充分不必要条件是 A 1 , e a B0,a C1,a D(,ea 9已知为坐标原点,AB是 :C 22 (3)(4)1xy的直径若点Q满足 2OQ ,则 QA QB的最小值为 A B C D 10方程 22 :2(1)(3)ee xx xxy 的曲线有下列说法: 该曲线关于2x =对称; 该曲线关于点(2, 1) 对称; 该曲线不经过第三象限;该曲线上有无数个点的横、纵坐标都是整数 其中正确的是 A B C D 11如图,四边形ABCD为正方形,四边形EFBD为矩形, 且平面ABCD与平面EFBD互
5、相垂直若多面体ABCDEF 的体积为 16 3 ,则该多面体外接球表面积的最小值为 A16 B12 C8 D6 12双曲线 22 22 :1(0,0) xy Cab ab 的左、右焦点分别为 1 F, 2 F,O为坐标原点P为 曲线C右支上的点,点M在 12 F PF外角平分线上,且 2 0F M PM uuuu v uuuv 若 2 OF M恰 为顶角为120o的等腰三角形,则该双曲线的离心率为 A2 3 B 4 3 3 C2 D3 二、填空题:本大题共 4 小题,每小题 5 分 O 23815 E D C B A F 4 正视图 侧视图 3 3 俯视图 13若抛物线经过点 1 1, 2 ,
6、(2,2),则该抛物线的标准方程为_ 14 记 n S为正项数列 n a的前n项和, 2 12nnn aaa 若 1 1a , 3 7S ,则 5 a _ 15宁德市中学生篮球比赛中,右图为某球队8场比赛得分的茎叶 图,其中有两个数字不慎被墨迹污染(分别用 ,m n标注).目前得 知这组数据的平均值为58,则方差 2 S最大时m n 的值为_ 16 已知函数 1 2 ,0, ( ) ,0. 2 1 x x ex f x x x x 若关于x的不等式 2( ) 2( )20fxaf xa的解集非空, 且 为有限集,则实数a的取值集合为_ 三、解答题:共 70 分解答应写出文字说明、证明过程和演算
7、步骤第 1721 题为必考 题,每个试题考生都必须做答第 22、23 题为选考题,考生根据要求做答 (一)必考题:共(一)必考题:共 60 分分 17 (12分) 如图, 在平面四边形ABCD中,ABBC,3 3AB ,3CD , 1 cos 7 BDC , 3 C . (1)求sinDBC; (2)求AD的长. 18 (12分) 如图,在棱柱ABCDA B C D中,底面ABCD为平行四边形,4,DDCD 2AD , 3 BAD ,且D在底面上的投影H恰为CD的中点. (1) 过D H作与BC垂直的平面, 交棱BC于点N, 试确定点N的位置, 并说明理由; (2)若点P满足DPDC ,试求的
8、值,使二面角PBHA为 3 4 . 19 (12分) 已知椭圆 22 22 :1(0) xy Cab ab 的离心率为 2 2 , 12 ,F F分别为椭圆的左、右焦点,点 P为椭圆C上的一动点, 12 PFF面积的最大值为 2. (1)求椭圆C的方程; (2)直线 2 PF与椭圆C的另一个交点为Q,点 2 2,0A,证明:直线PA与直线QA关 于x轴对称. 20 (12分) 已知函数 2 ( )ln(1) 2 a f xxxax(aR) (1)讨论函数( )f x的单调性; (2)求证: 32 2 6 (1ln )235 0 1 xxxx x 21 (12分) 某市旅游局为尽快恢复受疫情影响
9、的旅游业,准备在本市的景区推出旅游一卡通(年 卡) 为了更科学的制定一卡通的有关条例,市旅游局随机调查了 2019 年到本市景区 旅游的 1000 个游客的年旅游消费支出(单位:百元) ,并制成如下频率分布直方图: 由频率分布直方图,可近似地认为到本市景区旅游的游客,其旅游消费支出服从正态分 布 2 ( ,3.2 )N,其中近似为样本平均数x(同一组数据用该组区间的中点值作代表). (1) 若 2019 年到本市景区旅游游客为 500 万人,试估计 2019 年有多少游客在本市的年 旅游消费支出不低于 1820元; (2) 现依次抽取n个游客,假设每个游客的旅游消费支出相互独立,记事件A表示“
10、连续 3 人的旅游消费支出超出”若 n P表示A的概率, 123 1 (3, , 4 nnnn PaPPbPna b 为常数) ,且1 210 PPP. (i)求 3 P, 4 P及a,b; (ii)判断并证明数列 n P 从第三项起的单调性,试用概率统计知识解释其实际意义 (参考数据:()0.6826PX , (22 )0.9544PX , (33 )0.9973)PX (二二)选考题:共选考题:共 10 分分请考生在第请考生在第 22、23 题中任选一题做答,如果多做,则按所做的题中任选一题做答,如果多做,则按所做的 第一题记分第一题记分 22选修 44:坐标系与参数方程(10 分) 在直
11、角坐标系xOy中, 曲线 1 C的参数方程为 cos , sin x y 为参数 以坐标原点O为极 点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为1, 2 ,直线l的极坐标方程 为cos2 sin80 (1)求A的直角坐标和 l 的直角坐标方程; (2)把曲线 1 C上各点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线 2 C,B为 2 C上动点,求AB中点P到直线l距离的最小值 23选修 45:不等式选讲(10 分) 已知函数( )1,f xxmxm N. 若存在实数x使得( )3f x 成立. (1)求m的值; (2)若 ,0 ,411m,求 的最小值. 2020 年宁德市
12、普通高中毕业班质量检查试卷(5.4) 数学(理科)参考答案及评分标准 说明: 一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考, 如果考生的解法与本解法不同,可根据试题的主要考查内容比照评分标准指定相应的 评分细则 二、对计算题,当考生的解答在某一部分解答未改变该题的内容和难度,可视影响的 程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部 分的解答有较严重的错误,就不再给分 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数 四、只给整数分数,选择题和填空题不给中间分 一、选择题:本题考查基础知识和基本一、选择题:本题考查基础知识和基本
13、运算,每小题运算,每小题 5 分,满分分,满分 60 分分 1B 2C 3A 4D 5A 6A 7B 8C 9C 10D 11B 12D 二、填空题:本题考查基础知识和基本运算,每小题二、填空题:本题考查基础知识和基本运算,每小题 5 分,满分分,满分 20 分分 13 2 2xy 1416 15 16 1,3 三、解答题:本大题共三、解答题:本大题共 6 小题,满分小题,满分 70 分,解答须写出文字说明、证明过程和演算步骤分,解答须写出文字说明、证明过程和演算步骤 17本小题主要考查正弦定理、余弦定理、三角恒等变换 等基础知识,考查运算求解能力,考查化归与转化思想、 函数与方程思想等满分
14、12 分 解:(1) 因为 1 cos 7 BDC , 22 sincos1BDCBDC, 所以 4 3 sin 7 BDC .2 分 在BDC中,, 3 CDBCCBDC =, 所以sin sin()DBCBDCC3 分 sincoscossinBDCCBDCC4 分 4 3 1133 3 727214 . 5 分 (2)在BDC中,由正弦定理得 sinsin CDBD DBCC ,6 分 即 3 3 33 142 BD ,解得7BD .8 分 因为 2 ABDDBC , 3 3 sin 14 DBC, 所以cosABD 3 3 14 ,9 分 在ABD中,3 3AB ,根据余弦定理, 22
15、2 2cosADABBDAB BDABD10 分 22 3 3 (3 3)72 3 3 749 14 解得7AD 12 分 18本小题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基 础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等满 分 12 分 解: 解法一: (1)当点N为棱BC的中点时,符合题目要求,1 分 下面给出证明. 分别连结,. 在中, 所以 222 HCNCHN,因此 2 HNC ,即NHBC,2 分 因为D在底面上的投影H恰为CD的中点, 所以D H平面ABCD, 又BC 平面ABCD,所以DHBC,3 分 又NHBC,DHNH
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 福建省 宁德市 2020 届高三 质量 检查 理科 数学试题 答案
链接地址:https://www.77wenku.com/p-137445.html