北师大版九年级下册数学《3.6 第2课时切线的判定及三角形的内切圆》课件
《北师大版九年级下册数学《3.6 第2课时切线的判定及三角形的内切圆》课件》由会员分享,可在线阅读,更多相关《北师大版九年级下册数学《3.6 第2课时切线的判定及三角形的内切圆》课件(32页珍藏版)》请在七七文库上搜索。
1、3.6 直线和圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,第2课时 切线的判定及三角形的内切圆,北师大版九年级下册数学教学课件,1.理解并掌握圆的切线的判定定理及运用.(重点) 2.三角形的内切圆和内心的概念及性质.(难点),学习目标,砂轮上打磨工件时飞出的火星,下图中让你感受到了直线与圆的哪种位置关系?如何判断一条直线是否为切线呢?,导入新课,情境引入,讲授新课,问题1 如图,OA是O的半径, 经过OA 的外端点A, 作一条直线lOA,圆心O 到直线l 的距离是多少? 直线l 和O有怎样的位置关系?,合作探究,l,由圆的切线定义可知直线l 与圆O 相切.,l,过半径外端
2、且垂直于半径的直线是圆的切线.,OA为O的半径,BC OA于A,BC为O的切线,B,C,O,要点归纳,下列各直线是不是圆的切线?如果不是,请说明为什么?,(1)不是,因为没有垂直.,(2),(3)不是,因为没有经过半径的外端点A.,判一判,判断一条直线是一个圆的切线有三个方法:,1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;,2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;,3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.,要点归纳,用三角尺过圆上一点画圆的切线.,做一做,(2) 过点P 沿着三角尺的另一条直角边画直线l,则l 就是所要
3、画的切线.如图所示.,如下图所示,已知O 上一点P,过点P 画O 的切线,画法:(1)连接OP,将三角尺的直角顶点放在点P处, 并使一直角边与半径OP 重合;,为什么画出来的直线l是O的切线呢?,例1 已知:直线AB经过O上的点C,并且OA=OB,CA=CB.求证:直线AB是O的切线.,O,B,A,C,证明:连接OC. OAOB,CACB, OC是等腰OAB底边AB上的中线. ABOC. OC是O的半径, AB是O的切线.,典例精析,例2 如图,ABC 中,AB AC ,O 是BC的中点,O 与AB 相切于E.求证:AC 是O 的切线,B,O,C,E,A,分析:根据切线的判定定理,要证明AC是
4、O的切线,只要证明由点O向AC所作的垂线段OF是O的半径就可以了,而OE是O的半径,因此只需要证明OF=OE.,证明:连接OE ,OA, 过O 作OF AC.,O 与AB 相切于E , OE AB.,又在ABC 中,AB AC , O 是BC 的中点,AO 平分BAC,,F,B,O,C,E,A,OE OF.,OE 是O 半径,OF OE,OF AC.,AC 是O 的切线,又OE AB ,OFAC.,(1) 已明确直线和圆有公共点,连结圆心和公共点,即半径,再证直线与半径垂直.简记“有交点,连半径,证垂直”; (2) 不明确直线和圆有公共点,过圆心作直线的垂线,再证圆心到直线的距离等于半径.简记
5、“无交点,作垂直,证半径”.,证切线时辅助线的添加方法,例3 如何作圆,使它和已知三角形的各边都相切?,已知:ABC. 求作:和ABC的各边都相切的圆O.,分析:如果圆O与ABC的三条边都相切,那么圆心O到三条边的距离都等于_,从而这些距离相等.,半径,到一个角的两边距离相等的点一定在这个角的平分线上,因此圆心O是A 的_与B的_的_点.,平分线,平分线,交,作法: 1.作B和C的平分线BM和CN,交点为O. 2.过点O作ODBC.垂足为D. 3.以O为圆心,OD为半径作圆O.,O就是所求的圆.,观察与思考,与ABC的三条边都相切的圆有几个?,因为B和C的平分线的交点只有一个,并且交点O到AB
6、C三边的距离相等且唯一,所以与ABC三边都相切的圆有且只有一个.,1.与三角形各边都相切的圆叫做三角形的内切圆.,B,2.三角形内切圆的圆心叫做三角形的内心.,4.三角形的内心就是三角形的三条角平分线的交点.,3.三角形的内心到三角形的三边的距离相等.,O是ABC的内切圆,点O是ABC的内心.,三角形三边中垂线的交点,1.OA=OB=OC 2.外心不一定在三角形的内部,三角形三条角平分线的交点,1.到三边的距离相等; 2.OA、OB、OC分别 平分BAC、ABC、ACB 3.内心在三角形内部,填一填,例4 ABC中,O是ABC的内切圆, A=70, 求 BOC的度数。,解: A=70,ABC+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 九年级 下册 数学
链接地址:https://www.77wenku.com/p-138778.html